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Abstract

An analysis of singular solutions at corners consisting of several different homogeneous wedges is presented for

anisotropic potential theory in plane. The concept of transfer matrix is applied for a singularity analysis first of single

wedge problems and then of multi-material corner problems. Explicit forms of eigenequations for evaluation of sin-

gularity exponent in the case of multi-material corners are derived both for all combinations of homogeneous Neumann

and Dirichlet boundary conditions at faces of open corners and for multi-material planes with singular interior points.

Perfect transmission conditions at wedge interfaces are considered in both cases. It is proved that singularity exponents

are real for open anisotropic multi-material corners, and a sufficient condition for the singularity exponents to be real

for anisotropic multi-material planes is deduced. A case of a complex singularity exponent for an anisotropic multi-

material plane is reported, apparently for the first time in potential theory. Simple expressions of eigenequations are

presented first for open bi-material corners and bi-material planes and second for a crack terminating at a bi-material

interface, as examples of application of the theory developed here. Analytical solutions of these eigenequations are

presented for interface cracks with any combination of homogeneous boundary conditions along the interface crack

faces, and also for a special case of a crack perpendicular to a bi-material interface. A numerical study of variation of

the singularity exponent as a function of inclination of a crack terminating at a bi-material interface is presented.
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1. Introduction

Flux fields as solutions of potential Boundary Value Problems (BVPs), defined by a scalar second-order

elliptic equation, may have unbounded values near points where one or more of the following configura-
tions happen: the boundary of the domain is non-smooth, boundary conditions change abruptly or material

properties are discontinuous. A generic name of corners will be used hereinafter for configurations of this

kind of potential BVP. Flux fields whose values increase to infinity will be referred to as singular at the

corner tip. The knowledge of parameters associated to these singular flux fields can be important for some

applications of engineering interest, e.g.: antiplane deformation (Ma and Hour, 1990; Pageau et al.,

1995a,b; Ting, 1996), heat transfer, ideal fluid flow and porous media flow (Leguillon and Sanchez-

Palencia, 1987; Liggett and Liu, 1983), thermo-elasticity (Ting, 1996; Yosibash, 1998) and electrostatics

(Defourny, 1988). It has to be stressed that the singularity analysis of multi-material anisotropic corners
is of increasing importance due to their presence in composite materials and electronic devices, where they

can be the place of initiation of failure.

The presence of corner singularities in a solution of a BVP can significantly reduce the accuracy of

numerical solutions obtained by standard FEM and BEM analysis. To reduce this �pollution effect�,
knowledge of the singular solution behaviour may be required in applying either special discretization

procedures (e.g. using either elements with singular shape functions or auxiliary mappings, see Georgiu

et al., 1996; Helsing, 2000; Lefeber, 1989; Leguillon and Sanchez-Palencia, 1987; Liggett and Liu, 1983;

Mera et al., 2002; Oh and Babu�sska, 1995), or special post-processing procedures (e.g. extraction techniques,
see Arad et al., 1998; Yosibash and Szab�oo, 1995), the latter usually applied after a systematic mesh re-
finement (e.g. adaptive methods, see Szab�oo and Babu�sska, 1991).
It is worth resuming some conclusions of the general theory for analysis of corner singular solutions in

elliptic Partial Differential Equations (PDEs) which is at present well-developed (Costabel and Dauge,

1993; Kondratev, 1967). This theory covers the cases of corners with non-homogeneous boundary con-

ditions prescribed along generally curved edges and non-homogeneous materials whose properties are

smooth functions of cartesian coordinates. Considering a polar coordinate system ðr; hÞ centered at the
corner tip and applying a separation of variables, the solution basis at the corner is given in terms of power
type functions rkfkðhÞ, which sometimes have to be completed by power-logarithmic functions rk ln rfkðhÞ.
In general, a complex number k, called characteristic or singularity exponent (or simply eigenvalue), is

defined by a solution of a characteristic equation (eigenequation) associated to the local corner problem

configuration. Smooth functions fkðhÞ, called characteristic functions (eigenfunctions), are defined by the

solution of the associated eigenvector problem.

The main interest for practical applications represent singularity exponents k with real part 0 < Rek < 1.

They depend on the corner tangent sector and on the constant principal parts, taken at the tip of the corner,

of the differential operators in the elliptic PDE and in the boundary conditions. However, they depend
neither on the curvature of the corner edges, nor on the smooth right-hand sides of the PDE, nor on the

smooth right-hand sides of the boundary conditions prescribed along each face of the corner.

Mathematical analysis of solutions of BVPs in non-smooth domains, where the above discussed singular

solutions are present locally at corner tips, can be found in Grisvard (1992) and Nazarov and Plamenevsky

(1994).

The present paper deals with the analysis of singular solutions of potential problems at corners formed in

general by an arbitrary number of anisotropic homogeneous wedges converging at the corner tip, called

multi-material corners. The usual case of a corner with two non-bonded edges called corner faces, which are
subjected to some boundary conditions, is referred to hereinafter as an open corner problem. A particular

case of a multi-material corner, when all the plane is occupied by two or more bonded anisotropic wedges

converging at an interior point is referred to either as a closed corner problem (Dempsey and Sinclair, 1979;

Defourny, 1988) or as a multi-material plane (Ting, 1997).
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Theoretical studies of isotropic multi-material corners by Kellog (1971) and Birkhoff (1972) established

the relation between the singularity analysis of these corners and the Sturm-Liouville eigenvalue problem

with piecewise constant coefficients. Thus, the usual results on this problem can be extended to the sin-

gularity analysis of these corners. Sinclair (1980) considered combinations of four types of homogeneous
boundary conditions (Neumann, Dirichlet, convection and radiation) for bi-material isotropic corners and

suggested a form of transfer matrix for multi-material corners. He also discussed conditions for existence of

a power-logarithmic singularity behaviour. A singularity analysis of isotropic multi-material planes was

presented by Liggett and Liu (1983). An elegant analytic approach based on a transfer matrix concept for

singularity analysis of isotropic multi-material corners was introduced by Defourny (1988). Explicit ana-

lytical expressions of eigenequations and eigenfunctions for isotropic three-material corners were given by

Pageau et al. (1995b).

Leguillon and Sanchez-Palencia (1987) studied analytically a particular case of an anisotropic bi-
material corner and presented numerical results for anisotropic three-material corners. A complex analogy

to the standard Mellin transformation technique was used by Ma and Hour (1989, 1990) for a singularity

analysis of open anisotropic bi-material corners and a crack terminating at a straight bi-material interface.

A general numerical procedure, based on discretization of a variational formulation, for analysis of

multi-material corner problems was also developed by Leguillon and Sanchez-Palencia. Starting from a

Steklov problem formulation Yosibash and Szab�oo (1995) developed a general numerical approach for

singularity analysis in anisotropic multi-material corner problems. A finite element formulation of an

eigenvalue problem using special singular finite elements for singularity analysis of anisotropic multi-
material corner problems was developed by Pageau et al. (1995a,b). Another procedure, based on a nu-

merical solution of a linear ordinary differential equation with variable coefficients in the case of anisotropic

single-material corners was recently presented by Mera et al. (2002).

Singularity analyses of isotropic and anisotropic elastic multi-material corners, respectively, were in-

troduced by Dempsey and Sinclair (1979) (considering all combinations of the basic boundary conditions)

and Ting (1997) (considering only combinations of free and fixed edges). Manti�cc et al. (1997) developed an
approach for a singularity analysis of orthotropic elastic single-material corners considering all combina-

tions of basic boundary conditions, which is directly applicable to anisotropic corners as well. Recently Wu
(2001) presented a related approach dealing with anisotropic multi-material corners and all combinations

of basic boundary conditions except for slipping with friction.

In the present work explicit analytical expressions of eigenequations will be introduced for the case of a

multi-material anisotropic open corner consisting of one or more wedges, each one defined by a different

material, and with any combination of homogenous Dirichlet and Neumann boundary conditions pres-

cribed at the two corner faces. For simplicity only wedges with straight edges are considered here (see Ting

(1996), for a simple approach to deal with curved edges). Additionally, an explicit form of the eigen-

equation will be presented for the case of a multi-material plane. The eigenequations presented can be
solved either analytically, as shown here in some simple cases, or numerically by standard algorithms, like

Muller�s method. Explicit expressions of fkðhÞ for each homogeneous wedge will be given as well. The
authors of the present work believe that the explicit expressions introduced here will be very useful for

analytical study and numerical analysis by FEM and BEM of potential problems where local corner sin-

gular solutions appear.

In derivation of the above-mentioned explicit expressions, the concept of transfer matrix will be used in a

similar way to that developed by Defourny (1988) for an analysis of multi-material isotropic corner

problems in potential theory using a real variable approach and by Ting (1997) for an analysis of multi-
material anisotropic elastic corners using a complex variable formulation of anisotropic plane elasticity

(Clements, 1981; Ting, 1996). In the present work a real variable formulation of anisotropic potential

theory, some of whose results were briefly introduced by Manti�cc and Par�ııs (1995) and are presented

in depth here, will be used. For a complex variable formulation of anisotropic potential theory which
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could also be used for an analogous singularity analysis as presented here, see Clements (1981) and Ting

(1996).
2. Basic equations of anisotropic potential theory

2.1. General solution

Consider a domain X � R2 and a two-dimensional cartesian coordinate system xi ði ¼ 1; 2Þ. The flux
vector in an anisotropic potential problem in X is defined as
hiðxÞ ¼ Kiju;jðxÞ; i; j ¼ 1; 2; ð1Þ
where u is a potential function of x ¼ ðx1; x2Þ 2 X and K is a constant symmetric and positive definite matrix

which defines the anisotropic material properties. The vanishing divergence condition for flux vector yields

the following second-order elliptic governing equation in terms of the potential function:
Kiju;ijðxÞ ¼ 0: ð2Þ
The normal flux through a line given by a unit normal vector nðxÞ is defined as

qðxÞ ¼ niðxÞhiðxÞ: ð3Þ
Let the matrix L be defined as a factor in a symmetric decomposition of the inverse of the matrix K
K�1 ¼ LTL; K ¼ L�1ðL�1ÞT: ð4Þ
A general solution of (2) in X is given by any harmonic function ~uuð~xxÞ in eXX ¼ LX via a transformation of

coordinates as follows:
uðxÞ ¼ ~uuð~xxÞ; where ~xx ¼ Lx: ð5Þ
Without loss of generality it can be supposed that the determinant jLj > 0. To verify that (5)1 represents

a general solution of (2) it is sufficient to substitute (5)1 into (2) and to use (4)2 which leads to
Kiju;ijðxÞ ¼ D~uuð~xxÞ ¼ 0: ð6Þ
It will be useful to determine some magnitudes associated to the above Laplace equation for ~uu in the
transformed coordinates ~xxi ði ¼ 1; 2Þ.
The transformed flux vector can be evaluated as follows:
~hhið~xxÞ ¼ o~xxi~uuð~xxÞ ¼ LijhjðxÞ; ð7Þ
where (5), the chain rule for differentiation of composite functions, and (1) with (4) have been used in
obtaining the final expression.

Consider a line C � X with the unit normal vector at x 2 C denoted as nðxÞ. Then, as follows from (7)

and from the expression of the unit normal vector ~nnð~xxÞ to the transformed line eCC ¼ LC at ~xx deduced in
Appendix A, see (A.2), the transformed normal flux can be expressed as
~qqð~xxÞ ¼ ~nnið~xxÞ~hhið~xxÞ ¼
qðxÞ
nKðxÞ

; where nKðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTðxÞKnðxÞ

p
: ð8Þ
Note that the matrix L is not defined uniquely. The list of coordinate transformations used in the
literature includes those associated to: the complex variable formulation of anisotropic potential theory by

Clements (1981), Choleski triangle (see Golub and Van Loan, 1991) of K�1 by Leguillon and Sanchez-
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Palencia (1987) (both in fact closely related to each other), and the principal axes of material orthotropy by

Liggett and Liu (1983).

An expression of L obtained by the symmetric real Schur decomposition (see Golub and Van Loan,

1991) of K�1 is given in Appendix B, where some basic properties of this transformation are also derived.
This decomposition is defined by a rotation of the coordinate system xi by an angle a to the principal
orthotropy axes of K (see Liggett and Liu, 1983) by using an orthogonal matrix given by the eigenvectors of

K, and followed by a scaling of these new coordinate axes by inverse square roots of the eigenvalues, k1 and
k2 of K (k1 P k2 > 0). Hence, this transformation seems to be most naturally related to the material

structure.

It is worth noting that the only difference between two different L transformations is a rotation by a fixed

angle given by an orthogonal matrix. For the proof see Appendix C.

2.2. Polar coordinate systems in the real and transformed planes

Consider polar coordinate systems ðr; hÞ and ð~rr; ~hhÞ centered at the origin of cartesian coordinates and
defined in the usual way ðx1; x2Þ ¼ ðr cos h; r sin hÞ and ð~xx1;~xx2Þ ¼ ð~rr cos ~hh; ~rr sin ~hhÞ. Starting from (5)2 it can be

easily shown that ~hh is independent of r. Hence
~rr ¼ ~rrðr; hÞ; ~hh ¼ ~hhðhÞ: ð9Þ
Let us define a unit vector as eðhÞ ¼ ðcos h; sin hÞ. Then the radius vectors can be written as x ¼ reðhÞ and
~xx ¼ ~rreð~hhÞ.
It is important to observe that the length of the transformed radius vector ~xx is independent of a par-

ticular choice of L because it is given directly by K�1
~rr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTK�1x

p
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðhÞTK�1eðhÞ

q
¼ rqðhÞ; ð10Þ
implying the following general expression of the radial scaling factor
qðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K11 sin

2 h � 2K12 sin h cos h þ K22 cos2 h
jKj

s
> 0; ð11Þ
which is a smooth periodic function of h with the period p. An equivalent form of qðhÞ is given in Appendix
B by (B.7).

Although the value of the transformed angle ~hh ¼ ~hhðhÞ depends on the particular choice of L, its de-

rivative is independent of this choice as is shown directly in Appendix D, where a general expression of

d~hh=dh independent of L is derived, see (D.3).

Note that the above mentioned fact that d~hh=dh is independent of a particular choice of L is in agreement

with the result of Appendix C, which implies that for two different transformations defined by L1 and L2,

the relation between the associated transformed angles is
~hh2ðhÞ ¼ ~hh1ðhÞ þ b; ð12Þ
where b is a fixed angle defined by the orthogonal matrix QðbÞ in (C.4).

2.3. Wedge and transformed wedge

Consider an anisotropic homogeneous wedge domain X � R2 of the interior angle 0 < x6 2p with the
tip at the origin of coordinates and determined by two angles of its straight edges h0 and h1, x ¼ h1 � h0,



Fig. 1. Single wedge.
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see Fig. 1. Thus, X ¼ fx 2 R2j0 < r < RðhÞ; h0 < h < h1g, where RðhÞ is either a bounded continuous
function or infinity. Using (9), the value of the angle ~xx of the transformed wedge eXX ¼ LX is given by the

integral
~xx ¼ ~hhðh1Þ � ~hhðh0Þ ¼
Z h1

h0

d~hh
dh

dh: ð13Þ
Substituting (11) into (D.3) and integrating following (13) leads to
~xx ¼ h
p

� 
þ 1

2

	
p þ arctg

K11tgh � K12ffiffiffiffiffiffiffi
jKj

p !�����
h1

h0

; ð14Þ
where ½�
 means the integer part of a real number. For h ¼ ð2k þ 1Þp=2 (k an integer number, k 2 Z) the
undetermined expression of the primitive function in (14) is replaced by its limit value given directly by the

value of h. An analogous expression for ~xx can also be directly obtained from (B.8).

It is useful to note that ~xx can also be evaluated in a conceptually different way, considering a geometric

representation of the wedge, Fig. 1. An application of basic properties of the scalar and vector products to

the unit tangential vectors to the wedge edges yields the following elegant expression, Manti�cc and Par�ııs
(1995):
~xx ¼ p þ sgnðx � pÞ arccos
�
� eTðh1ÞK�1eðh0Þ

qðh1Þqðh0Þ



; ð15Þ
where sgn means the usual signum function.

It should be remarked that ~xx is not determined only by the wedge angle x but also by its orientation, i.e.

by h0 and h1. As follows from the above expressions, ~xx ¼ x for the limit values x ¼ 0 or 2p and also for
x ¼ p. If x ¼ p=2 or 3p=2 and the wedge faces are parallel to the orthotropy axes of the material, then
~xx ¼ x as well.
3. Single-wedge singularity analysis by a transfer matrix

The solution of (2) in an anisotropic homogeneous wedge domain X (Fig. 1) is considered here in a

neighbourhood of the wedge tip in the following form of an asymptotic expansion in terms of basis
functions, whose coefficients Al are called generalized flux intensity factors,
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uðr; hÞ ¼
X1
l¼0

Alrkl fklðhÞ: ð16Þ
In what follows one basis function of the above asymptotic expansion of the form
uðr; hÞ ¼ rkfkðhÞ; ð17Þ
is analysed, where k is a singularity exponent and fkðhÞ is at the moment an unknown characteristic

function defined by the parameter k. From (5) and results of Section 2.2 it follows that (17) can be written

as
uðr; hÞ ¼ ~uuð~rr; ~hhÞ ¼ ~rrk ~ffkð~hhÞ ¼ rkqkðhÞ ~ffkð~hhÞ thus fkðhÞ ¼ qkðhÞ ~ffkð~hhÞ; ð18Þ
where ~hh ¼ ~hhðhÞ.
The normal flux through a straight radial line defined by an angle h and associated to the normal vector

nðhÞ ¼ ð� sin h; cos hÞ, see Fig. 1, is given, in view of (8), by
qðr; hÞ ¼ ~qqð~rr; ~hhÞnKðhÞ; ð19Þ
where using (8)2 and (11) it can be shown that
nKðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTðhÞKnðhÞ

p
¼

ffiffiffiffiffiffiffi
jKj

p
qðhÞ: ð20Þ
In the transformed isotropic potential problem the flux through a radial line at ~hh is given by
~qqð~rr; ~hhÞ ¼ 1

~rr
o~uuð~rr; ~hhÞ

o~hh
: ð21Þ
Hence, applying (18)–(21) for k 6¼ 0,
qðr; hÞ ¼
ffiffiffiffiffiffiffi
jKj

p 1

r
o~uuð~rr; ~hhÞ

o~hh
¼ rk�1qkðhÞ

ffiffiffiffiffiffiffi
jKj

p d ~ffkð~hhÞ
d~hh

; ð22Þ
which implies that qðr; hÞ is singular for r ! 0þ if Rek < 1. Note that potential solutions with a finite
energy in a bounded domain X correspond to Rek > 0.

Define a new function /ðr; hÞ, called flux function, which fulfills
qðr; hÞ ¼ o/ðr; hÞ
or

; ð23Þ
in the following way, for k 6¼ 0,
/ðr; hÞ ¼ rk

k
qkðhÞ

ffiffiffiffiffiffiffi
jKj

p d ~ffkð~hhÞ
d~hh

: ð24Þ
Note that vanishing of qðr; hÞ defined by (22) is equivalent to vanishing of /ðr; hÞ defined by (24).
From the form of Laplace equation in polar coordinates
D~uuð~rr; ~hhÞ ¼ o2~rr

�
þ ~rr�1o~rr þ ~rr�2o2~hh

�
~uu ¼ 0 ð25Þ
it is directly obtained by substitution of (18)1 that
D~uuð~rr; ~hhÞ ¼ ~rrk�2 d2 ~ffkð~hhÞ
d~hh2

 
þ k2 ~ffkð~hhÞ

!
¼ 0 ð26Þ
and consequently a general solution for ~ffkð~hhÞ takes the following form including two constants ac and as:
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~ffkð~hhÞ ¼ ac cos k~hh þ as sin k~hh: ð27Þ
Then, the pair of potential and flux function solutions, for k 6¼ 0, can be written as a vector
wðr; hÞ ¼ uðr; hÞ
/ðr; hÞ

� 	
¼ rkqkðhÞ cos k~hh sin k~hh

�
ffiffiffiffiffiffiffi
jKj

p
sin k~hh

ffiffiffiffiffiffiffi
jKj

p
cos k~hh

� 	
ac
as

� 	
ð28Þ
or in a compact form
wðr; hÞ ¼ rkZðk; hÞa; ð29Þ
where aT ¼ ½ac; as
 and ~hh ¼ ~hhðhÞ. Note that jZðk; hÞj ¼ q2kðhÞ
ffiffiffiffiffiffiffi
jKj

p
6¼ 0. Thus Zðk; hÞ is a regular matrix.

Equation (29) for h ¼ h0 and h1 gives
wðr; h0Þ ¼ rkZðk; h0Þa and wðr; h1Þ ¼ rkZðk; h1Þa: ð30Þ
Insertion of a obtained from (30)1 into (30)2 leads for k 6¼ 0 to
wðr; h1Þ ¼ Eðk; h1; h0Þwðr; h0Þ; ð31Þ
where
Eðk; h1; h0Þ ¼ Zðk; h1ÞZ�1ðk; h0Þ ¼
qðh1Þ
qðh0Þ

� 
k cos k ~xx 1ffiffiffiffi
jKj

p sin k ~xx

�
ffiffiffiffiffiffiffi
jKj

p
sin k ~xx cos k ~xx

" #

¼ Eð1ÞðkÞ Eð2ÞðkÞ
Eð3ÞðkÞ Eð4ÞðkÞ

� 	
; ð32Þ
~xx ¼ ~hhðh1Þ � ~hhðh0Þ having been evaluated in Section 2.3.
The 2 · 2 matrix E is the transfer matrix defined in an analogous way to Defourny (1988) and Ting

(1997). It transfers the value of w at h0 to w at h1. Elements of this matrix are denoted here as in Ting (1997).
It can be seen that
Eð1ÞðkÞ ¼ Eð4ÞðkÞ and Eð3ÞðkÞ ¼ �jKjEð2ÞðkÞ: ð33Þ
It is also useful to observe that
jEj ¼ qðh1Þ=qðh0Þð Þ2k 6¼ 0; ð34Þ
and for a particular case of an isotropic material of wedge jEj ¼ 1, cf. Defourny (1988).

Eq. (31) can be partitioned in the following way:
uðr; h1Þ ¼ Eð1ÞðkÞuðr; h0Þ þ Eð2ÞðkÞ/ðr; h0Þ; ð35Þ

/ðr; h1Þ ¼ Eð3ÞðkÞuðr; h0Þ þ Eð4ÞðkÞ/ðr; h0Þ: ð36Þ
Recall that (35) and (36) hold only for uðr; hÞ and /ðr; hÞ, respectively, in the forms (17) and (24).
Consider now four configurations of homogeneous Neumann (N) and Dirichlet (D) boundary condi-

tions at wedge edges and potential solutions of the form (17) for k 6¼ 0. System (35) and (36) have, for each

configuration, a non-trivial solution if and only if k is a root of the corresponding eigenequation.

Eigenequations (in a general form and also in a simple explicit form) and eigenvalues for these homo-

geneous wedge problems are summarized in Table 1, where Z is the set of integer numbers.
Note that in the N–N case the solution for k0 ¼ 0 corresponds to a constant solution, uðr; hÞ ¼ ac and

qðr; hÞ ¼ /ðr; hÞ ¼ 0.
As can be observed, the roots of the eigenequations presented are real and simple, and coincide in the

N–N and D–D cases because of (33)2 and in the N–D and D–N cases because of (33)1.



Table 1

Eigenequations, eigenvalues and general singular solutions for homogeneous single wedge problems

Case Boundary conditions Eigenequation Eigen-

values kl

ðl 2 ZÞ

Series expansion of non-

vanishing either potential

or flux at h0

Potential solution

uðr; hÞ ðh06 h6 h1Þ

N–N qðr; h0Þ ¼ qðr; h1Þ ¼ 0 Eð3ÞðkÞ ¼ 0 sin k ~xx ¼ 0 l p
~xx uðr; h0Þ

¼
P1

l¼0Alrklqkl ðh0Þ

P1
l¼0Alrklqkl ðhÞ

� cos klð~hhðhÞ � ~hhðh0ÞÞ
� �

D–D uðr; h0Þ ¼ uðr; h1Þ ¼ 0 Eð2ÞðkÞ ¼ 0 sin k ~xx ¼ 0 l p
~xx qðr; h0Þ

¼
ffiffiffiffiffiffiffi
jKj

p P1
l¼1Alrkl�1qkl ðh0Þkl

P1
l¼1Alrklqkl ðhÞ

� sin klð~hhðhÞ � ~hhðh0ÞÞ
� �

N–D qðr; h0Þ ¼ uðr; h1Þ ¼ 0 Eð1ÞðkÞ ¼ 0 cos k ~xx ¼ 0 lþ 1
2

� �
p
~xx uðr; h0Þ

¼
P1

l¼0Alrklqkl ðh0Þ

P1
l¼0Alrklqkl ðhÞ

� cos klð~hhðhÞ � ~hhðh0ÞÞ
� �

D–N uðr; h0Þ ¼ qðr; h1Þ ¼ 0 Eð4ÞðkÞ ¼ 0 cos k ~xx ¼ 0 lþ 1
2

� �
p
~xx qðr; h0Þ

¼
ffiffiffiffiffiffiffi
jKj

p P1
l¼0Alrkl�1qkl ðh0Þkl

P1
l¼0Alrklqkl ðhÞ

� sin klð~hhðhÞ � ~hhðh0ÞÞ
� �
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Explicit forms of general singular potential solutions uðr; hÞ at a single wedge with any configuration of
homogeneous boundary conditions can be obtained using expression (31) written for any angle h,
h06 h6 h1, instead of only its maximum value h1. Hence,
wðr; hÞ ¼ Eðk; h; h0Þwðr; h0Þ: ð37Þ

Starting from suitable series expansions of a non-vanishing distribution of either potential or flux at h0,

expressions of general singular solutions uðr; hÞ are presented in Table 1 as well. Analogous expressions for
qðr; hÞ can be obtained in a similar way using (37).
4. Multi-material corner singularity analysis

Consider a corner domain X � R2 that consists of mP 2 different anisotropic homogeneous wedge

domains Xn ¼ fx 2 R2j0 < r < RðhÞ; hn�1 < h < hng of angle xn ¼ hn � hn�1 ðn ¼ 1; . . . ;mÞ. Material

properties of the nth wedge are defined by a symmetric positive definite matrix Kn. All wedges refer to the

same cartesian and polar coordinate systems, see Fig. 2. The total corner angle w is
0 < w ¼ hm � h0 ¼ x1 þ x2 þ � � � þ xm 6 2p: ð38Þ

Considering the same singularity exponent k of a basis function uðr; hÞ ¼ rkfkðhÞ for all wedges, the key

idea, following Defourny (1988) and Ting (1997), is to apply equations derived in Section 3, basically Eq.

(31), to each wedge of the multi-material corner together with an application of the perfect transmission

conditions at wedge interfaces.
Denoting by a subscript n the quantities associated to the nth wedge, Eq. (31) is written as
wnðr; hnÞ ¼ Enðk; hn; hn�1Þwnðr; hn�1Þ; ð39Þ

where from (32)
Enðk; hn; hn�1Þ ¼
qnðhnÞ

qnðhn�1Þ

� 
k cos k ~xxn
1ffiffiffiffiffiffi
jKnj

p sin k ~xxn

�
ffiffiffiffiffiffiffiffi
jKnj

p
sin k ~xxn cos k ~xxn

" #
: ð40Þ
Transmission conditions across the wedge interface at hn demand that
wnðr; h�
n Þ ¼ wnþ1ðr; hþ

n Þ; r > 0; ð41Þ



Fig. 2. Multi-material corner.
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where h�
n and hþ

n , respectively, denote unilateral limits from the left and right. Eq. (41) means continuity of
potential and normal flux (or flux function) associated to the normal vector nðhnÞ ¼ ð� sin hn; cos hnÞ.
Repeated application of (39) and (41) for n ¼ 1; . . . ;m leads to
wmðr; hmÞ ¼ Cmðk; hm; h0Þw1ðr; h0Þ; ð42Þ

where
Cmðk; hm; h0Þ ¼ Emðk; hm; hm�1ÞEm�1ðk; hm�1; hm�2Þ � � �E1ðk; h1; h0Þ ¼ Cð1Þ
m ðkÞ Cð2Þ

m ðkÞ
Cð3Þ

m ðkÞ Cð4Þ
m ðkÞ

� 	
: ð43Þ
Using (34) and (43) it is obtained that
Cmðk; hm; h0Þj j ¼
Ym
n¼1

qnðhnÞ
qnðhn�1Þ

� 
2k
6¼ 0; ð44Þ
which implies a useful relation
Cð1Þ
m ðkÞCð4Þ

m ðkÞ 6¼ Cð2Þ
m ðkÞCð3Þ

m ðkÞ: ð45Þ
Eq. (44) reduces to jCmðk; hm; h0Þj ¼ 1, for isotropic materials, cf. Defourny (1988).

For the case of a multi-material plane, when w ¼ 2p, and edges at h ¼ hm and h ¼ h0 correspond to the
same line, the transmission condition across this line demands
wmðr; h�
mÞ ¼ w1ðr; hþ

0 Þ; ð46Þ
which implies, using (42), that
Cmðk; hm; h0Þð � IÞw1ðr; h0Þ ¼ 0; ð47Þ

where I is the 2 · 2 identity matrix. A non-trivial solution for w1ðr; h0Þ exists if
Cmðk; hm; h0Þj � Ij ¼ 0; ð48Þ



Table 2

Eigenequations for open multi-material corners

Case Boundary conditions Eigenequation

N–N q1ðr; h0Þ ¼ qmðr; hmÞ ¼ 0 Cð3Þ
m ðkÞ ¼ 0

D–D u1ðr; h0Þ ¼ umðr; hmÞ ¼ 0 Cð2Þ
m ðkÞ ¼ 0

N–D q1ðr; h0Þ ¼ umðr; hmÞ ¼ 0 Cð1Þ
m ðkÞ ¼ 0

D–N u1ðr; h0Þ ¼ qmðr; hmÞ ¼ 0 Cð4Þ
m ðkÞ ¼ 0
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which is equivalent to
Cð1Þ
m ðkÞ þ Cð4Þ

m ðkÞ ¼ 1þ Cmðk; hm; h0Þj j: ð49Þ
The roots k of this equation represent singularity exponents of the closed corner problem.
For the case of a multi-material corner in which homogeneous Neumann or Dirichlet boundary con-

ditions are prescribed on lines at h ¼ h0 and h ¼ hm, the analysis is similar to the one presented in Section 3.

Using analogous equations to (35) and (36)
umðr; hmÞ ¼ Cð1Þ
m ðkÞu1ðr; h0Þ þ Cð2Þ

m ðkÞ/1ðr; h0Þ; ð50Þ

/mðr; hmÞ ¼ Cð3Þ
m ðkÞu1ðr; h0Þ þ Cð4Þ

m ðkÞ/1ðr; h0Þ; ð51Þ

the corresponding eigenequations for different combinations of homogeneous boundary conditions can be

derived, see Table 2.

Due to the fact that an analogous relation to (33)2 does not hold for matrix Cmðk; hm; h0Þ, the roots of
eigenequations in the N–N and D–D cases are in general different, the same holding for roots of eigen-

equations in the N–D and D–N cases. Additionally, from (45) it follows that if k is an eigenvalue for the
N–N or D–D cases it cannot be any eigenvalue either for N–D or D–N, and viceversa.
An elementary proof that singularity exponents of open and closed isotropic multi-material corners

(roots of eigenequations given in Table 2 and (49)) are real numbers is presented in Appendix E (see also a

discussion on this topic by Kellog (1971) and Birkhoff (1972)). In view of the real character of singularity

exponents in isotropic corners, it is shown in Appendix F that singularity exponents of any open aniso-

tropic multi-material corner are also real. In a particular case of open anisotropic bi-material corners, this

fact was already proved by Leguillon and Sanchez-Palencia (1987) and Ma and Hour (1989). Ma and Hour

(1990) also showed that singularity exponents are real for a crack terminating at an interface. Nevertheless,

the same fact is proved for closed anisotropic multi-material corners in Appendix F only if condition (F.4)
holds. An example of a closed bi-material corner, which does not fulfill this condition, with complex sin-

gularity exponents will be presented in the next section.

An expression of the solution in the nth wedge, corresponding to a particular value of k as a root of an
eigenequation given in Table 2 or (49) can be obtained as in (37) using the representation
wnðr; hÞ ¼ Cnðk; h; h0Þw1ðr; h0Þ; hn�16 h6 hn; ð52Þ

where w1ðr; h0Þ is determined from the boundary condition at h0 for open corner problems or as an eigen-
vector in (47) for closed corner problems.
5. Examples

Two typical examples of multi-material corners appearing very frequently in engineering practice are

studied in what follows. They allow us, first to corroborate the present general approach comparing with
the corresponding results obtained by other authors using more specific approaches, and second to present

some new results which are important from an engineering point of view.
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The simplest case of multi-material corners, bi-material corners, is studied first. These corners can model

many local configurations present in composite materials, electronic packaging, etc.

The second example, a crack terminating at a bi-material interface, has been motivated by its typical

presence in composite materials and coatings (e.g. thermal barrier coatings). The configuration analysed
can be considered as a simple model of a failure mode in such applications. For an extensive bibliography

on this configuration see Ma and Hour (1990).

5.1. Bi-material corners

Consider the case of two adjacent anisotropic wedges ðm ¼ 2Þ. Then applying (40) and (43)
Table

Eigene

Cas

N–N

D–D

N–D

D–N
C2ðk; h2; h0Þ ¼
q2ðh2Þ
q2ðh1Þ

q1ðh1Þ
q1ðh0Þ

� 
k

�
cos k ~xx2 cos k ~xx1 �

ffiffiffiffiffiffi
jK1j
jK2j

q
sin k ~xx2 sin k ~xx1

1ffiffiffiffiffiffi
jK1j

p cos k ~xx2 sin k ~xx1 þ 1ffiffiffiffiffiffi
jK2j

p sin k ~xx2 cos k ~xx1

�
ffiffiffiffiffiffiffiffi
jK2j

p
sin k ~xx2 cos k ~xx1 �

ffiffiffiffiffiffiffiffi
jK1j

p
cos k ~xx2 sin k ~xx1 cos k ~xx2 cos k ~xx1 �

ffiffiffiffiffiffi
jK2j
jK1j

q
sin k ~xx2 sin k ~xx1

264
375:

ð53Þ
Defining a bi-material parameter �, as in Ma and Hour (1989), as
� ¼ 1� j
1þ j

; j ¼

ffiffiffiffiffiffiffiffi
jK1j
jK2j

s
; �1 < � < 1; ð54Þ
simple expressions of eigenequations for the case of open bi-material corners can be obtained from (53) and

eigenequations given in Table 2, see Table 3.

Eigenequations presented in Table 3 were previously obtained using a complex variable approach in

conjunction with the complex Mellin transform by Ma and Hour (1989). Eigenequation for the N–N case

was also deduced in a different way by Leguillon and Sanchez-Palencia (1987).

If interface cracks are considered, i.e. x1 ¼ x2 ¼ p, then ~xx1 ¼ ~xx2 ¼ p. Explicit values of singularity
exponents kl for this particular case of open bi-material corners are shown in Table 3 as well. Note that

these expressions of kl for both N–D and D–N cases can also be written in terms of j in view of the

following relation:
arctan
ffiffiffi
j

p
¼ 1

2
arccos �: ð55Þ
Expression of kl for both N–N and D–D cases shown in Table 3 corresponds to a well known result, see

e.g. Ma and Hour (1989) and Ting (1986, 1996). An equivalent expression of kl for the N–D case to that

given in Table 3 was presented for isotropic materials by Ting (1986) and for anisotropic materials by Ma

and Hour (1989).
3

quations for open bi-material corners and eigenvalues for interface cracks as a particular case

e Eigenequation for an open bi-material corner Eigenvalues for an interface crack kl ðl 2 ZÞ
sin kð ~xx1 þ ~xx2Þ ¼ � sin kð ~xx1 � ~xx2Þ l

2

sin kð ~xx1 þ ~xx2Þ ¼ �� sin kð ~xx1 � ~xx2Þ l
2

cos kð ~xx1 þ ~xx2Þ ¼ �� cos kð ~xx1 � ~xx2Þ lþ 1
2
� 1

2p arccos �

cos kð ~xx1 þ ~xx2Þ ¼ � cos kð ~xx1 � ~xx2Þ l� 1
2p arccos �
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In the case of a bi-material plane, the eigenequation (49) takes the following form obtained from (53)
1 Th

�2K1K
cos k
�
~xx1 þ ~xx2

�
¼ �2 cos k ~xx1

�
� ~xx2

�
þ 1� �2

2

 
q2ðh2Þ
q2ðh1Þ

q1ðh1Þ
q1ðh0Þ

!k
0@ þ

 
q2ðh2Þ
q2ðh1Þ

q1ðh1Þ
q1ðh0Þ

!�k
1A: ð56Þ
An equivalent eigenequation to (56) was derived for an isotropic bi-material plane in Liggett and Liu

(1983), see Eq. (4.18) there. 1

As has been mentioned in Section 4, the roots of (56) are not necessarily real if the expression which
appears on the left-hand side of (F.4) is different from unity. Observe that this expression appears two times

on the right-hand side of (56).

It has to be stressed that a complex singularity exponent (k ¼ Rek þ iImk) has an associated oscillatory
singular behaviour of flux of type rRe k�1 sinðImk ln rÞ or rRe k�1 cosðImk ln rÞ. Such solutions are well known
in the case of �open� elastic interface cracks, where no contact zone is considered at the crack tip, e.g. Ting
(1986, 1996).

Following an analysis given in Leguillon and Sanchez-Palencia (1987), if a closed bi-material corner has

a symmetry axis (taking into account the orientation of orthotropy axes in both materials) then the
solutions at this corner can be split into a symmetric and a skew symmetric part, which are, respectively,

given as solutions of the Neumann and Dirichlet problems on one half of the bi-material plane with the

boundary defined by the symmetry axis of the closed corner. Therefore, the singularity exponents of such a

closed corner are defined by the singularity exponents of the Neumann and Dirichlet problems at the

corresponding open corner defined by the pertinent half-plane. Consequently these singularity exponents

are real, as has been explained previously. It is an easy exercise to check that in this particular case of closed

anisotropic corners the condition (F.4) holds.

As follows from the above analysis, the only possible candidates of closed bi-material corners to have
complex eigenvalues are those which do not have any symmetry axis. A simple example of such a closed

bi-material corner is presented in what follows. Consider K1 ¼ I, K2 ¼ diag½10; 0:1
, h0 ¼ 0�, h1 ¼ 90� and
h2 ¼ 360�, thus x1 ¼ 90� and x2 ¼ 270�. The value of the expression on the left-hand side of (F.4) is 0:1.
Then, the singularity exponents, roots of (56), with 0 < Rek < 1 are k ¼ 0:8816020381� 0:3230787589i.

5.2. Crack terminating at a bi-material interface

Consider the case of two perfectly bonded half-planes with material properties defined by K1 for x2 > 0
and by K2 for x2 < 0. Consider a crack in the top half-plane terminating at the interface, Fig. 3. For the sake

of brevity only the case of homogeneous Neumann boundary conditions at the crack lips is analysed here.

Note that any combination of boundary conditions can be analysed using the pertinent eigenequation as

given in Table 2. Let the angle defined by the crack and the positive axis x1 be denoted by x, 0 < x < p. For
the limit values of x ¼ 0 or p the crack changes to an interface crack.
The above configuration can be represented, using the present notation, as a tri-material wedge defined

as follows: h0 ¼ x, h1 ¼ p, h2 ¼ 2p, h3 ¼ 2p þ x; x1 ¼ p � x, x2 ¼ p, x3 ¼ x; K3 ¼ K1 and q1ðr; h0Þ ¼
q3ðr; h3Þ ¼ 0.
Then, using (40), (43), the eigenequation for the N–N case in Table 2 takes the following form after some

rearrangements:
sin kp j sin k ~xx sin kðp
�

� ~xxÞ � j�1 cos k ~xx cos kðp � ~xxÞ � cos kp



¼ 0; ð57Þ
ere is a misprint in the second member of Eq. (4.18) in Liggett and Liu (1983), the correct form of this term being

2 cos kd1 cos kd2.



Fig. 3. Crack terminating at a bi-material interface.
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j being defined in (54), and, in view of (15),
~xx ¼ p � arccos
�
� eTðxÞK�1

1 eð0Þ
q1ðxÞq1ð0Þ



; ð58Þ
with subscript 1 referring to the material in the top half-plane.

Eq. (57) is verified either when the first term vanishes, i.e. sin kp ¼ 0, thus k ¼ l, l 2 Z, or when the
second term vanishes, which is equivalent to the following equation:
cos kp ¼ �� cos kðp � 2 ~xxÞ; ð59Þ
� being defined in (54). An equivalent eigenequation to (59) was obtained by Ma and Hour (1990) using the
complex Mellin integral transform. From a simple analysis of (59), it can be seen that the singularity

exponent k is smaller for negative than for positive values of �, which means that the corresponding flux
singular states are more severe when the crack is placed in the material with a higher value of determinant

of K, i.e. jK1j > jK2j, c.f. Ma and Hour (1990).
Note that if jK1j ¼ jK2j then � ¼ 0, and consequently the singularity exponent takes the value k ¼ 0:5 for

any angle x and any orientation of the orthotropy axes of both materials.

For a particular case where the orthotropy axes of the material at the top half-plane are parallel and

perpendicular to the interface and the crack is perpendicular to the interface it holds that ~xx ¼ x ¼ p=2 and
an explicit expression of the singularity exponent takes the form
k ¼ 1� 1

p
arccos �: ð60Þ
Thus, in this case, k ¼ 0:5 if and only if � ¼ 0.

Finally, consider the following configurations of material properties (see Fig. 3): K1 ¼ V � diag½1; k
 � VT,

where the material parameter k ¼ 0:25 or 4, V, given by expression (B.3) in Appendix B, defines the angle a
ða ¼ 0�; 30�; 90�Þ of orientation of material orthotropy axes, and K2 ¼ I. Then, the singularity exponents

obtained by a numerical solution of (59) are presented in Fig. 4.

As can be observed, the behaviour of the singularity exponent as a function of the crack inclination

verifies the expected symmetries, and k ¼ 0:5 only for the limit cases of interface cracks. It is also interesting
to observe that in the case where jK1j > jK2j the lowest values of k are achieved if the direction of the crack
approximates to the orthotropy direction associated to the largest eigenvalue of K1.



Fig. 4. Singularity exponent as a function of the crack inclination to the interface.
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6. Concluding remarks

A new general and powerful method for calculation of eigenequations whose roots define the singularity
exponents at multi-material anisotropic corners in potential theory has been developed. Eigenquation

computation is reduced to the evaluation of a product of 2�2 matrices, one for each homogeneous wedge.
When the corner is open the relevant expression is given by an element of the resulting matrix. When the

corner is closed the relevant expression is given by the determinant of the resulting matrix minus the

identity matrix.

Proof that singularity exponents are real in open anisotropic multi-material corners has been presented

for the first time, to the best authors knowledge. Additionally, a sufficient condition for the singularity

exponents to be real in closed anisotropic multi-material corners has been derived. As a consequence of
these new theoretical results, the first example in the literature, of a closed anisotropic bi-material corner

which violates the above condition and which has associated a complex singularity exponent has been

found. Notice that singular solutions corresponding to complex singularity exponents have an oscillatory

character, similar to that well-known in some elastic interface crack problems.

Once singularity exponents are evaluated, either analytically or using a numerical method, the solution

of the corner problem is obtained in an explicit form. This corner solution can be subsequently applied in a

numerical solution of an actual problem at a non-smooth domain as a local asymptotic solution in order to

improve accuracy and order of convergence of the solution.
Note that the method developed here for piecewise homogeneous anisotropic potential problems can be

used directly for computation of singularity exponents in an anisotropic Helmholtz equation and in non-

homogeneous potential problems with smooth variation of material properties, which appear in applica-

tions of the so-called Functionally Graded Materials (FGM�s). As follows from the anisotropic uncoupled

thermo-elasticity theory (Ting, 1996), the singularity exponents associated to a corner heat transfer

problem, which can be obtained by the method developed in this work, represent, when shifted by +1, a

subset of all singularity exponents of thermal stresses. (See Yosibash (1998) for a numerical analysis of

thermal stress singularities using knowledge of heat flux singularities at a corner.)
An extension of the approach introduced here to cases where the homogeneous convection and radiation

boundary conditions are prescribed on one or both corner faces and to cases where transmission conditions

at some or all interfaces are not perfect (i.e. some resistance to flux takes place, and therefore the normal

flux through the interface is proportional to the difference of potential at the adjacent wedges) should also
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be carried out developing, for example, Sinclair�s (1980) approach. Also an analysis of the existence of
power-logarithmic singularities in flux in the case of double eigenvalues (typically situated on the transition

loci separating regions of real and complex eigenvalues associated to closed anisotropic multi-material

corners which do not fulfill condition (F.4)) ought to be developed using approaches presented by Dempsey
and Sinclair (1979), Dempsey (1995), Leguillon and Sanchez-Palencia (1987) and Ting (1996).
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Appendix A. Transformation of the unit normal vector to a line

Consider the unit tangent and normal vectors to a line C � R2 at a point x which are related by n ¼ Es,
where E is the unit antisymmetric matrix, E12 ¼ �E21 ¼ 1 and E11 ¼ E22 ¼ 0. Note that ETE ¼ EET ¼ I,

where I is the identity matrix.

It is obvious that the unit tangential vector to the transformed line eCC ¼ LC at ~xx is given as
~ss ¼ Ls

kLsk ¼ Lsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTK�1s

p ; ðA:1Þ
where (4)1 has been used. Starting from relation ~nn ¼ E~ss and using s ¼ ETn leads to
~nn ¼ ELETnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTEK�1ETn

p ¼ ðL�1ÞTnffiffiffiffiffiffiffiffiffiffiffi
nTKn

p ; ðA:2Þ
where the well-known relation EAET ¼ jAjðA�1ÞT, valid for any regular matrix A 2 R2�2, has been used.
Appendix B. A particular case of transformation ~xx ¼ Lx

A symmetric positive definite matrix K 2 R2�2 can be decomposed in the following way, called the

symmetric real Schur decomposition (Golub and Van Loan, 1991):
K ¼ VDVT ¼ ðVD1=2ÞðVD1=2ÞT ¼ L�1ðL�1ÞT; ðB:1Þ
where D ¼ diag½k1; k2
 is a diagonal matrix of eigenvalues of K ðk1 P k2 > 0)
k1; k2 ¼
1

2
K11

�
þ K22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK11 � K22Þ2 þ 4K2

12

q 

; ðB:2Þ
and V is an orthogonal matrix with columns defined by the eigenvectors of K, associated to the principal

axes of material orthotropy, ðx�1; x�2Þ
V ¼ cos a � sin a
sin a cos a

� 

; ðB:3Þ



Fig. 5. Transformation of coordinates.
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a being the angle of the first eigenvector with respect to axis x1, see Fig. 5, given by
a ¼ arctan
2K12

K11 � K22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK11 � K22Þ2 þ 4K2

12

q
0B@

1CA; ðB:4Þ
where in the case of an indeterminate expression for K12 ¼ 0, the above angle a can be taken a ¼ p=2 if
K11 < K22 and a ¼ 0 if K11 ¼ K22. Hence,
L ¼ D�ð1=2ÞVT ¼

cos affiffiffiffi
k1

p sin affiffiffiffi
k1

p

� sin affiffiffiffi
k2

p cos affiffiffiffi
k2

p

0BB@
1CCA: ðB:5Þ
Considering the polar coordinate system ðr; hÞ at the origin of the coordinates, the transformed radius
vector and its length can be written using (B.5) as follows:
~xx ¼ r
cosðh � aÞffiffiffiffi

k1
p ;

sinðh � aÞffiffiffiffi
k2

p

0@ 1A; ðB:6Þ
~rr ¼ rqðhÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�11 cos2ðh � aÞ þ k�12 sin2ðh � aÞ

q
: ðB:7Þ
Angle ~hh between the radius vector ~xx ¼ ~rreð~hhÞ and the coordinate axis ~xx1 can be evaluated by the following
compact analytical expression:
~hhðhÞ ¼

h � a for h � a ¼ ð2k þ 1Þp
2

h � a
p

þ 1

2

24 35p þ arctan

ffiffiffiffi
k1
k2

r
tanðh � aÞ

� 

for h � a 6¼ ð2k þ 1Þp

2

8>>><>>>: ; ðB:8Þ
where ½�
 means the integer part of a real number and k 2 Z is an integer number. Note that ~hhðaÞ ¼ 0.
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Differentiation of (B.8) results in
d~hh
dh

¼ 1ffiffiffiffiffiffiffiffi
k1k2

p
q2ðhÞ

: ðB:9Þ
Appendix C. Relation between different transformations

Consider two different transformations defined by L1 and L2 with jL1j > 0 and jL2j > 0,
K�1 ¼ LT
1L1 ¼ LT

2L2: ðC:1Þ

Taking into account that L1 is a regular matrix gives, via multiplication of this equality from the left and

right, respectively, by ðLT
1 Þ

�1
and L�1

1 ,
ðL2L
�1
1 ÞT � ðL2L

�1
1 Þ ¼ I; ðC:2Þ
where I is the identity matrix. Defining Q ¼ L2L
�1
1 Eq. (C.2) writes as
QTQ ¼ I; ðC:3Þ

which means that the matrix Q is an orthogonal matrix (Golub and Van Loan, 1991) relating both
transformations
L2 ¼ QðbÞL1; QðbÞ ¼ cos b � sin b
sin b cos b

� 

: ðC:4Þ
Appendix D. General relation between h and ~hh

Let us evaluate the Jacobian of the transformation between the polar coordinate systems ðr; hÞ and ð~rr; ~hhÞ.
Direct evaluation gives
oð~rr; ~hhÞ
oðr; hÞ ¼

o~rr
or

o~rr
oh

o~hh
or

o~hh
oh

�������
������� ¼

o~rr
or

o~hh
oh

¼ qðhÞ o
~hh

oh
; ðD:1Þ
where the fact that o~hh=or ¼ 0 and (10) have been used. On the other hand, evaluation of this Jacobian by an

application of the chain rule gives
oð~rr; ~hhÞ
oðr; hÞ ¼

oð~rr; ~hhÞ
oð~xx1;~xx2Þ

oð~xx1;~xx2Þ
oðx1; x2Þ

oðx1; x2Þ
oðr; hÞ ¼ 1

~rr
jLjr ¼ 1ffiffiffiffiffiffiffi

jKj
p

qðhÞ
; ðD:2Þ
where relations (5)2 and (10) have been used. Equating the last expressions in (D.1) and (D.2) yields
d~hh
dh

¼ 1ffiffiffiffiffiffiffi
jKj

p
q2ðhÞ

: ðD:3Þ
Appendix E. Proof that singularity exponents are real in open and closed isotropic multi-material corners

Let a piecewise constant function ,ðhÞ be defined in the open interval ðh0; hmÞ by positive numbers ,n as
follows: ,ðhÞ ¼ ,n > 0 for h 2 ðhn�1; hnÞ, n ¼ 1; . . . ;m, where h0 < h1 < � � � hn � � � < hm. Consider a space V
of continuous functions in the closed interval ½h0; hm
 defined as follows:
V ¼ f 2 C0½h0; hm
jf j½hn�1;hn
 2 C2ðhn�1; hnÞ \ C1½hn�1; hn
;,nf 0ðh�
n Þ

(
¼ ,nþ1f 0ðhþ

n Þ; 16 n6m� 1

)
;

ðE:1Þ
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where Ck denotes k-times continuously differentiable functions in a set, and f 0ðh�
n Þ and f 0ðhþ

n Þ, respectively,
denote the unilateral limits from the left and right of the first order derivative of f at hn.

Consider now a subspace V0 of V where eigenfunctions associated to a multi-material corner problem

(with homogeneous boundary conditions in the case of an open corner) will be looked for. Thus
V0 ¼ f 2 V jb:c
n o

; ðE:2Þ
where �b.c.� denotes either f 0ðhþ
0 Þ ¼ f 0ðh�

mÞ ¼ 0, or f ðhþ
0 Þ ¼ f ðh�

mÞ ¼ 0, or f 0ðhþ
0 Þ ¼ f ðh�

mÞ ¼ 0, or

f ðhþ
0 Þ ¼ f 0ðh�

mÞ ¼ 0 in the case of an open corner, or f ðhþ
0 Þ ¼ f ðh�

mÞ and ,1f 0ðhþ
0 Þ ¼ ,mf 0ðh�

mÞ in the case of a
closed corner.

Define a weighted scalar product for square integrable functions on ðh0; hmÞ as follows:
hf ; gi,¼
def

Z hm

h0

,ðhÞf ðhÞgðhÞdh: ðE:3Þ
It is obvious that hf ; f i, P 0, and that hf ; f i, ¼ 0 if and only if f is zero almost everywhere on ðh0; hmÞ.
The following results will be required. If f ; g 2 V0 then
hf 00; gi, ¼ �hf 0; g0i,: ðE:4Þ

Evaluation of the left-hand side in (E.4) by partitioning the integral to integrals on subintervals and in-

tegrating by parts yields
hf 00; gi, ¼
Xm
n¼1

Z hn

hn�1

,nf 00ðhÞgðhÞdh ¼
Xm
n¼1

 
ð,nf 0ðhÞgðhÞÞjhnhn�1 �

Z hn

hn�1

,nf 0ðhÞg0ðhÞdh
!

¼
Xm�1
n¼1

ð,nf 0ðh�
n Þ � ,nþ1f 0ðhþ

n ÞÞgðhnÞ � ,1f 0ðhþ
0 Þgðh0Þ þ ,mf 0ðh�

mÞgðhmÞ � hf 0; g0i,: ðE:5Þ
Taking into account the continuity conditions given in (E.1) and definitions of �b.c� in (E.2), respectively, it
is seen that the value of the sum in the second row of (E.5) and value of expression �,1f 0ðhþ

0 Þgðh0Þþ
,mf 0ðh�

mÞgðhmÞ are zero, which proves (E.4).
Using (E.4) it can be shown that if f 2 V0 and
f 00ðhÞ þ k2f ðhÞ ¼ 0 for h 2 ðhn�1; hnÞ; n ¼ 1; . . . ;m; ðE:6Þ

then k is a real number. A straightforward calculation yields:
k2hf ; f i, ¼ h�f 00; f i, ¼ hf 0; f 0i, P 0; ðE:7Þ

where (E.6) has been used in obtaining the first equality and (E.4) in the second one. Thus, k2 P 0, con-

sequently k is a real number.
The main result of this Section can be stated as follows. Let uðr; hÞ ¼ rkf ðhÞ be a solution of Laplace

equation in each wedge Xn ¼ fx 2 R2j0 < r < RðhÞ; hn�1 < h < hng, n ¼ 1; . . . ;m,
,nDuðr; hÞ ¼ 0; ðE:8Þ

and the following interface conditions hold for n ¼ 1; . . . ;m� 1
uðr; h�
n Þ ¼ uðr; hþ

n Þ; ðE:9Þ

qnðr; h�
n Þ ¼ ,n

1

r
ou
oh

ðr; h�
n Þ ¼ ,nþ1

1

r
ou
oh

ðr; hþ
n Þ ¼ qnþ1ðr; hþ

n Þ ðE:10Þ
and, additionally, either some of the following homogeneous boundary conditions q1ðr; hþ
0 Þ ¼ 0 ¼

qmðr; h�
mÞ, or uðr; hþ

0 Þ ¼ 0 ¼ uðr; h�
mÞ, or q1ðr; hþ

0 Þ ¼ 0 ¼ uðr; h�
mÞ, or uðr; hþ

0 Þ ¼ 0 ¼ qmðr; h�
mÞ, or the two

closure conditions uðr; hþ
0 Þ ¼ uðr; h�

mÞ and q1ðr; hþ
0 Þ ¼ qmðr; h�

mÞ, hold. Then k is a real number.
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The proof starts by considering that ,nDuðr; hÞ ¼ ,nrk�2ðf 00ðhÞ þ k2f ðhÞÞ, qnðr; hÞ ¼ rk�1,nf 0ðhÞ, and that
a general solution of f 00ðhÞ þ k2f ðhÞ ¼ 0 is of the form f ðhÞ ¼ ac cos h þ as sin h which is a bounded and
smooth function for all h. Then, the interface and boundary conditions for uðr; hÞ, respectively, are
equivalent to continuity conditions on f ðhÞ in (E.1) and �b.c.� in (E.2), and consequently f 2 V0 and (E.6)
holds. Therefore, k is a real number.
Note that system (E.6), (E.9) and (E.10) together with the boundary or closure conditions correspond to

a Sturm–Liouville eigenvalue problem with piecewise constant coefficients discussed by Kellog (1971) and

Birkhoff (1972).

Appendix F. Proof that singularity exponents are real in open anisotropic multi-material corners

Consider a multi-material 2 anisotropic corner X as studied in Section 4. The objective of this section is

to show that any open anisotropic multi-material corner problem can be considered to be equivalent to an

open isotropic multi-material corner problem. Then, the main result of the Appendix E can be applied to

the anisotropic case considered here. As will be seen, the same statement holds for a particular case of

closed anisotropic corner problems as well.

In order to obtain a mapping between an anisotropic and a corresponding isotropic multi-material
corner which is continuous across interfaces between adjacent wedges, linear mapping used in (5) has to be

modified when applied to the nth wedge by a scaling factor and by a rotation matrix defined, for example,
by the following recursive formulae for n ¼ 1; . . . ;m� 1:
2 M
l1 ¼ 1 lnþ1 ¼ ln
qnðhnÞ

qnþ1ðhnÞ
ðF:1Þ

Q1 ¼ I Qnþ1 ¼ Q ~hhnðhnÞ
�

� ~hhnþ1ðhnÞ



Qn; ðF:2Þ
where qnðhÞ is defined in (11), function ~hhnðhÞ in (B.8), and Qð�Þ in (C.4). LetLn ¼ lnQnLn, Ln being given in
(B.5). Then LT

nLn ¼ l2nK
�1
n and L�1

n ðL�1
n ÞT ¼ l�2n Kn. Consider a mapping defined for x 2 Xn (where Xn

denotes the closure of Xn) by Lnx ¼ x̂x ðn ¼ 1; . . . ;mÞ. Denote the transformed nth wedge as

LnXn ¼ X̂Xn ¼ fx̂x 2 R2j0 < r̂r < R̂RðĥhÞ; ĥhn�1 < ĥh < ĥhng.
It is not difficult to check that the set of linear mappings defined in this way represents a continuous

mapping across the wedge interfaces. Actually, the transformed radius of a point xðr; hnÞ at the interface
between Xn and Xnþ1 is given from the side of X̂Xn by r̂rnðr; hnÞ ¼ rlnqnðhnÞ and from the side of Xnþ1 by

r̂rnþ1ðr; hnÞ ¼ rlnþ1qnþ1ðhnÞ. Then, in view of (F.1)
r̂rnþ1ðr; hnÞ
r̂rnðr; hnÞ

¼ lnþ1qnþ1ðhnÞ
lnqnðhnÞ

¼ 1 ðF:3Þ
for n ¼ 1; . . . ;m� 1. In a similar way, using (F.2), it can be shown that ĥhnðhnÞ ¼ ĥhnþ1ðhnÞ for n ¼
1; . . . ;m� 1.

It has to be pointed out that condition ĥhm � ĥh06 2p no longer has to be fulfilled.
In the case of a closed anisotropic multi-material corner, it is important to observe that

r̂rmðr; hmÞ ¼ r̂r1ðr; h0Þ if and only if lmqmðhmÞ ¼ l1q1ðh0Þ, which according to (F.1) is equivalent to
Ym
n¼1

qnðhnÞ
qnðhn�1Þ

¼ 1: ðF:4Þ
agnitudes associated to the nth wedge are usually denoted either by a subscript �n� or sometimes for the sake of clarity by �ðnÞ�.
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Note that this always holds for isotropic multi-material corners. Nevertheless, condition (F.4) does not

hold, in general, for anisotropic multi-material corners. It is also interesting to observe the relation between

condition (F.4) and (44) and (49).

Let u and ûu be, respectively, defined in Xn and X̂Xn and related by uðxÞ ¼ ûuðLnxÞ for x 2 Xn. Then,
analogously to (6)
KðnÞijoxioxjuðxÞ ¼ KðnÞijLðnÞkiLðnÞljox̂xkox̂xl ûuðx̂xÞ ¼ l2nDûuðx̂xÞ: ðF:5Þ
Thus, fulfilling governing anisotropic Eq. (2) in Xn by u is equivalent to fulfilling Laplace equation by ûu inbXXn.

Define transformed flux vector associated to an isotropic material in bXXn as
ĥhiðx̂xÞ ¼
def

,nox̂xi ûuðx̂xÞ; ðF:6Þ
where ,n ¼
ffiffiffiffiffiffiffiffi
jKnj

p
. Then, as in (7) the following expression of the transformed flux vector is obtained:
ĥhiðx̂xÞ ¼ ,nox̂xiuðL�1
n x̂xÞ ¼ ,nu;jðxÞL�1

ðnÞji ¼ ,nl�2n LðnÞijhjðxÞ; ðF:7Þ
where hiðxÞ ¼ KðnÞiju;jðxÞ for x 2 Xn.

An analogous procedure to that used in Appendix A yields the following transformation rule for a unit

normal vector to a curve in Xn
n̂n ¼ ln
ðL�1

n ÞTn
nKn

; where nKn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nTKnn

p
: ðF:8Þ
Using expression (F.8) the following expression of the transformed normal flux in X̂Xn is deduced:
q̂qnðx̂xÞ ¼ n̂niðx̂xÞĥhiðx̂xÞ ¼ ,n
qðxÞ

lnnKnðxÞ
: ðF:9Þ
Hence, when the transformed normal flux across the wedge interface at bhhn is evaluated, the following

expressions are obtained:
q̂qnðr̂r; bhh�
n Þ ¼ ,n

qnðr; h�
n Þ

lnnKnðhnÞ
; q̂qnþ1ðr̂r; bhhþ

n Þ ¼ ,nþ1
qnþ1ðr; hþ

n Þ
lnþ1nKnþ1ðhnÞ

: ðF:10Þ
According to (20) it holds that nKnðhnÞ ¼ ,nqnðhnÞ and nKnþ1ðhnÞ ¼ ,nþ1qnþ1ðhnÞ. Substituting these relations
to (F.10) it is obtained, in view of (F.1), that the following equalities
q̂qnðr̂r; bhh�
n Þ ¼ q̂qnþ1ðr̂r; bhhþ

n Þ and qnðr; h�
n Þ ¼ qnþ1ðr; hþ

n Þ ðF:11Þ
are equivalent for n ¼ 1; . . . ;m� 1. Consequently any open anisotropic multi-material corner problem with

its interface conditions of continuity in potential and fluxes is equivalent to an open isotropic multi-material
corner problem. It has to be stressed that the same statement does not hold for closed anisotropic multi-

material corner problems. It can be shown that a sufficient condition for this is (F.4), because if this

condition holds then
q̂qmðr̂r; bhh�
mÞ ¼ q̂q1ðr̂r; bhhþ

0 Þ is equivalent to qmðr; h�
mÞ ¼ q1ðr; hþ

0 Þ; ðF:12Þ
which can be shown in a similar way to (F.11).

Therefore, taking into account the main result of Appendix E, singularity exponents for open aniso-

tropic multi-material corners, and also for closed corners providing (F.4) is fulfilled, are real numbers. An
example of a closed bi-material anisotropic corner, which violates (F.4), with complex singularity exponents

is given in Section 5.1.
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