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Abstract

An analysis of singular solutions at corners consisting of several different homogeneous wedges is presented for
anisotropic potential theory in plane. The concept of transfer matrix is applied for a singularity analysis first of single
wedge problems and then of multi-material corner problems. Explicit forms of eigenequations for evaluation of sin-
gularity exponent in the case of multi-material corners are derived both for all combinations of homogeneous Neumann
and Dirichlet boundary conditions at faces of open corners and for multi-material planes with singular interior points.
Perfect transmission conditions at wedge interfaces are considered in both cases. It is proved that singularity exponents
are real for open anisotropic multi-material corners, and a sufficient condition for the singularity exponents to be real
for anisotropic multi-material planes is deduced. A case of a complex singularity exponent for an anisotropic multi-
material plane is reported, apparently for the first time in potential theory. Simple expressions of eigenequations are
presented first for open bi-material corners and bi-material planes and second for a crack terminating at a bi-material
interface, as examples of application of the theory developed here. Analytical solutions of these eigenequations are
presented for interface cracks with any combination of homogeneous boundary conditions along the interface crack
faces, and also for a special case of a crack perpendicular to a bi-material interface. A numerical study of variation of
the singularity exponent as a function of inclination of a crack terminating at a bi-material interface is presented.
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1. Introduction

Flux fields as solutions of potential Boundary Value Problems (BVPs), defined by a scalar second-order
elliptic equation, may have unbounded values near points where one or more of the following configura-
tions happen: the boundary of the domain is non-smooth, boundary conditions change abruptly or material
properties are discontinuous. A generic name of corners will be used hereinafter for configurations of this
kind of potential BVP. Flux fields whose values increase to infinity will be referred to as singular at the
corner tip. The knowledge of parameters associated to these singular flux fields can be important for some
applications of engineering interest, e.g.: antiplane deformation (Ma and Hour, 1990; Pageau et al.,
1995a,b; Ting, 1996), heat transfer, ideal fluid flow and porous media flow (Leguillon and Sanchez-
Palencia, 1987; Liggett and Liu, 1983), thermo-elasticity (Ting, 1996; Yosibash, 1998) and electrostatics
(Defourny, 1988). It has to be stressed that the singularity analysis of multi-material anisotropic corners
is of increasing importance due to their presence in composite materials and electronic devices, where they
can be the place of initiation of failure.

The presence of corner singularities in a solution of a BVP can significantly reduce the accuracy of
numerical solutions obtained by standard FEM and BEM analysis. To reduce this ‘pollution effect’,
knowledge of the singular solution behaviour may be required in applying either special discretization
procedures (e.g. using either elements with singular shape functions or auxiliary mappings, see Georgiu
et al., 1996; Helsing, 2000; Lefeber, 1989; Leguillon and Sanchez-Palencia, 1987; Liggett and Liu, 1983;
Mera et al., 2002; Oh and Babuska, 1995), or special post-processing procedures (e.g. extraction techniques,
see Arad et al., 1998; Yosibash and Szabo, 1995), the latter usually applied after a systematic mesh re-
finement (e.g. adaptive methods, see Szabd and Babuska, 1991).

It is worth resuming some conclusions of the general theory for analysis of corner singular solutions in
elliptic Partial Differential Equations (PDEs) which is at present well-developed (Costabel and Dauge,
1993; Kondratev, 1967). This theory covers the cases of corners with non-homogeneous boundary con-
ditions prescribed along generally curved edges and non-homogeneous materials whose properties are
smooth functions of cartesian coordinates. Considering a polar coordinate system (r,0) centered at the
corner tip and applying a separation of variables, the solution basis at the corner is given in terms of power
type functions 7*f;(0), which sometimes have to be completed by power-logarithmic functions * Inrf;(0).
In general, a complex number /, called characteristic or singularity exponent (or simply eigenvalue), is
defined by a solution of a characteristic equation (eigenequation) associated to the local corner problem
configuration. Smooth functions f;(8), called characteristic functions (eigenfunctions), are defined by the
solution of the associated eigenvector problem.

The main interest for practical applications represent singularity exponents 4 with real part 0 < Re A < 1.
They depend on the corner tangent sector and on the constant principal parts, taken at the tip of the corner,
of the differential operators in the elliptic PDE and in the boundary conditions. However, they depend
neither on the curvature of the corner edges, nor on the smooth right-hand sides of the PDE, nor on the
smooth right-hand sides of the boundary conditions prescribed along each face of the corner.

Mathematical analysis of solutions of BVPs in non-smooth domains, where the above discussed singular
solutions are present locally at corner tips, can be found in Grisvard (1992) and Nazarov and Plamenevsky
(1994).

The present paper deals with the analysis of singular solutions of potential problems at corners formed in
general by an arbitrary number of anisotropic homogeneous wedges converging at the corner tip, called
multi-material corners. The usual case of a corner with two non-bonded edges called corner faces, which are
subjected to some boundary conditions, is referred to hereinafter as an open corner problem. A particular
case of a multi-material corner, when all the plane is occupied by two or more bonded anisotropic wedges
converging at an interior point is referred to either as a closed corner problem (Dempsey and Sinclair, 1979;
Defourny, 1988) or as a multi-material plane (Ting, 1997).
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Theoretical studies of isotropic multi-material corners by Kellog (1971) and Birkhoff (1972) established
the relation between the singularity analysis of these corners and the Sturm-Liouville eigenvalue problem
with piecewise constant coefficients. Thus, the usual results on this problem can be extended to the sin-
gularity analysis of these corners. Sinclair (1980) considered combinations of four types of homogeneous
boundary conditions (Neumann, Dirichlet, convection and radiation) for bi-material isotropic corners and
suggested a form of transfer matrix for multi-material corners. He also discussed conditions for existence of
a power-logarithmic singularity behaviour. A singularity analysis of isotropic multi-material planes was
presented by Liggett and Liu (1983). An elegant analytic approach based on a transfer matrix concept for
singularity analysis of isotropic multi-material corners was introduced by Defourny (1988). Explicit ana-
Iytical expressions of eigenequations and eigenfunctions for isotropic three-material corners were given by
Pageau et al. (1995D).

Leguillon and Sanchez-Palencia (1987) studied analytically a particular case of an anisotropic bi-
material corner and presented numerical results for anisotropic three-material corners. A complex analogy
to the standard Mellin transformation technique was used by Ma and Hour (1989, 1990) for a singularity
analysis of open anisotropic bi-material corners and a crack terminating at a straight bi-material interface.

A general numerical procedure, based on discretization of a variational formulation, for analysis of
multi-material corner problems was also developed by Leguillon and Sanchez-Palencia. Starting from a
Steklov problem formulation Yosibash and Szabd (1995) developed a general numerical approach for
singularity analysis in anisotropic multi-material corner problems. A finite element formulation of an
eigenvalue problem using special singular finite elements for singularity analysis of anisotropic multi-
material corner problems was developed by Pageau et al. (1995a,b). Another procedure, based on a nu-
merical solution of a linear ordinary differential equation with variable coefficients in the case of anisotropic
single-material corners was recently presented by Mera et al. (2002).

Singularity analyses of isotropic and anisotropic elastic multi-material corners, respectively, were in-
troduced by Dempsey and Sinclair (1979) (considering all combinations of the basic boundary conditions)
and Ting (1997) (considering only combinations of free and fixed edges). Mantic et al. (1997) developed an
approach for a singularity analysis of orthotropic elastic single-material corners considering all combina-
tions of basic boundary conditions, which is directly applicable to anisotropic corners as well. Recently Wu
(2001) presented a related approach dealing with anisotropic multi-material corners and all combinations
of basic boundary conditions except for slipping with friction.

In the present work explicit analytical expressions of eigenequations will be introduced for the case of a
multi-material anisotropic open corner consisting of one or more wedges, each one defined by a different
material, and with any combination of homogenous Dirichlet and Neumann boundary conditions pres-
cribed at the two corner faces. For simplicity only wedges with straight edges are considered here (see Ting
(1996), for a simple approach to deal with curved edges). Additionally, an explicit form of the eigen-
equation will be presented for the case of a multi-material plane. The eigenequations presented can be
solved either analytically, as shown here in some simple cases, or numerically by standard algorithms, like
Muller’s method. Explicit expressions of f;(0) for each homogeneous wedge will be given as well. The
authors of the present work believe that the explicit expressions introduced here will be very useful for
analytical study and numerical analysis by FEM and BEM of potential problems where local corner sin-
gular solutions appear.

In derivation of the above-mentioned explicit expressions, the concept of transfer matrix will be used in a
similar way to that developed by Defourny (1988) for an analysis of multi-material isotropic corner
problems in potential theory using a real variable approach and by Ting (1997) for an analysis of multi-
material anisotropic elastic corners using a complex variable formulation of anisotropic plane elasticity
(Clements, 1981; Ting, 1996). In the present work a real variable formulation of anisotropic potential
theory, some of whose results were briefly introduced by Manti¢ and Paris (1995) and are presented
in depth here, will be used. For a complex variable formulation of anisotropic potential theory which
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could also be used for an analogous singularity analysis as presented here, see Clements (1981) and Ting
(1996).

2. Basic equations of anisotropic potential theory
2.1. General solution

Consider a domain Q C R* and a two-dimensional cartesian coordinate system x; (i = 1,2). The flux
vector in an anisotropic potential problem in € is defined as

hi(x) = Kyu(x), i,j=1,2, (1)
where u is a potential function of x = (x;,x,) € Q and K is a constant symmetric and positive definite matrix

which defines the anisotropic material properties. The vanishing divergence condition for flux vector yields
the following second-order elliptic governing equation in terms of the potential function:

Kijuj;(x) = 0. (2)
The normal flux through a line given by a unit normal vector n(x) is defined as

q(x) = ni(X)h;(x). (3)
Let the matrix L be defined as a factor in a symmetric decomposition of the inverse of the matrix K

K'=L"L, K=L"'(L"H" 4)

A general solution of (2) in Q is given by any harmonic function #(X) in Q = LQ via a transformation of
coordinates as follows:

u(x) = u(x), where X = Lx. (5)

Without loss of generality it can be supposed that the determinant |L| > 0. To verify that (5), represents
a general solution of (2) it is sufficient to substitute (5); into (2) and to use (4), which leads to

Kiju;;(x) = Ai(X) = 0. (6)

It will be useful to determine some magnitudes associated to the above Laplace equation for # in the
transformed coordinates x; (i = 1,2).
The transformed flux vector can be evaluated as follows:

hi(X) = Ogi(X) = Lijh;(x), (7)

where (5), the chain rule for differentiation of composite functions, and (1) with (4) have been used in
obtaining the final expression.

Consider a line I' C Q with the unit normal vector at x € I" denoted as n(x). Then, as follows from (7)
and from the expression of the unit normal vector n(X) to the transformed line I' = LI’ at X deduced in
Appendix A, see (A.2), the transformed normal flux can be expressed as

G(X) = (%) hi(X) = 9(x) ,  where ng(x) = /nT(x)Kn(x). (8)

g (x)

Note that the matrix L is not defined uniquely. The list of coordinate transformations used in the
literature includes those associated to: the complex variable formulation of anisotropic potential theory by
Clements (1981), Choleski triangle (see Golub and Van Loan, 1991) of K~' by Leguillon and Sanchez-
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Palencia (1987) (both in fact closely related to each other), and the principal axes of material orthotropy by
Liggett and Liu (1983).

An expression of L obtained by the symmetric real Schur decomposition (see Golub and Van Loan,
1991) of K™ is given in Appendix B, where some basic properties of this transformation are also derived.
This decomposition is defined by a rotation of the coordinate system x; by an angle « to the principal
orthotropy axes of K (see Liggett and Liu, 1983) by using an orthogonal matrix given by the eigenvectors of
K, and followed by a scaling of these new coordinate axes by inverse square roots of the eigenvalues, k; and
ky of K (k; = k, > 0). Hence, this transformation seems to be most naturally related to the material
structure.

It is worth noting that the only difference between two different L transformations is a rotation by a fixed
angle given by an orthogonal matrix. For the proof see Appendix C.

2.2. Polar coordinate systems in the real and transformed planes

Consider polar coordinate systems (r,0) and (7, ) centered at the origin of cartesian coordinates and
defined in the usual way (x;,x,) = (rcos 0, rsin 0) and (¥,,X,) = (7cos 0, 7sin 0). Starting from (5), it can be
easily shown that 6 is independent of ». Hence

F=#r0), 0=0(0). (9)

Let us define a unit vector as e(0) = (cos 0, sin ). Then the radius vectors can be written as x = re(f)) and

x = 7e(0).
It is important to observe that the length of the transformed radius vector X is independent of a par-
ticular choice of L because it is given directly by K™

F=VXTK 'x = r\/e(0) K 'e(0) = rp(0), (10)

implying the following general expression of the radial scaling factor

p(0) = \/K” sin? 0 — 2K, sin 0 cos 0 + K>, cos? 0 >0, (11)

K]

which is a smooth periodic function of 6 with the period 7. An equivalent form of p(0) is given in Appendix
B by (B.7).

Although the value of the transformed angle 6 = 5(0) depends on the particular choice of L, its de-
rivative is independent of this choice as is shown directly in Appendix D, where a general expression of
d6/d0 independent of L is derived, see (D.3).

Note that the above mentioned fact that d6/d0 is independent of a particular choice of L is in agreement
with the result of Appendix C, which implies that for two different transformations defined by L; and L,,
the relation between the associated transformed angles is

0>(0) = 0:(0) + B, (12)
where f3 is a fixed angle defined by the orthogonal matrix Q(f) in (C.4).

2.3. Wedge and transformed wedge

Consider an anisotropic homogeneous wedge domain Q C R? of the interior angle 0 < w < 2r with the
tip at the origin of coordinates and determined by two angles of its straight edges 6, and 0, w = 0, — 6,
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Fig. 1. Single wedge.

see Fig. 1. Thus, Q = {x € R*|0 <r < R(0),0y < 0 < 0,}, where R(0) is either a bounded continuous
function or infinity. Using (9), the value of the angle @ of the transformed wedge @ = LQ is given by the
integral

0, dé

@ = 0(0,) — 0(0) = 6 35 90- (13)

Substituting (11) into (D.3) and integrating following (13) leads to

o= {0+1}n+arct Kiuth—Ku
“\l=72 VK

where [-] means the integer part of a real number. For 0 = (2k + 1)n/2 (k an integer number, k € Z) the
undetermined expression of the primitive function in (14) is replaced by its limit value given directly by the
value of 0. An analogous expression for @ can also be directly obtained from (B.8).

It is useful to note that @ can also be evaluated in a conceptually different way, considering a geometric
representation of the wedge, Fig. 1. An application of basic properties of the scalar and vector products to
the unit tangential vectors to the wedge edges yields the following elegant expression, Manti¢ and Paris
(1995):

0y

; (14)
0y

eT(Hl)Kle(HO))’ (15)

p(01)p(0o)

where sgn means the usual signum function.

It should be remarked that @ is not determined only by the wedge angle w but also by its orientation, i.e.
by 60y and 0,. As follows from the above expressions, @ = w for the limit values w = 0 or 27 and also for
ow=mn.If ®=mn/2 or 3n/2 and the wedge faces are parallel to the orthotropy axes of the material, then
o = w as well.

@ =m+ sgn(w — ) arccos< —

3. Single-wedge singularity analysis by a transfer matrix

The solution of (2) in an anisotropic homogeneous wedge domain Q (Fig. 1) is considered here in a
neighbourhood of the wedge tip in the following form of an asymptotic expansion in terms of basis
functions, whose coefficients 4, are called generalized flux intensity factors,
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=3 f, () (16)

In what follows one basis function of the above asymptotic expansion of the form

M(I’, 0) :r/ifi(e)v (17)

is analysed, where A is a singularity exponent and f;(0) is at the moment an unknown characteristic
function defined by the parameter 4. From (5) and results of Section 2.2 it follows that (17) can be written
as

u(r,0) = a(F,0) = #£,(0) = *p*(0)£,(0)  thus £;(0) = p*(0)f;(0), (18)

where 6 = 0(0).
The normal flux through a straight radial line defined by an angle 6 and associated to the normal vector
n(0) = (—sin 0, cos ), see Fig. 1, is given, in view of (8), by

q(V,@) :6(f70~)n1<(6)3 (19)

where using (8), and (11) it can be shown that

= /n"(0)Kn(0 K]|p(6 (20)

In the transformed isotropic potentlal problem the flux through a radial line at 0 is given by

- 10u(7,0
a(7.0) = 0, (1)
Hence, applying (18)—(21) for 1 #£ 0,
1 oa(7, 60 : df, (0
a(r.0) = VIRIE SO o) i) 22)

which implies that ¢(r,6) is singular for » — 0% if Rel < 1. Note that potential solutions with a finite
energy in a bounded domain Q correspond to Rel > 0.
Define a new function ¢(r, 0), called flux function, which fulfills

_0¢(r,0)
ar,0) =202, (23)
in the following way, for A # 0,
R df,(0)
¢(r,0) *IP)(Q)\A_KTW- (24)

Note that vanishing of ¢(r, 0) defined by (22) is equivalent to vanishing of ¢(r, 0) defined by (24).
From the form of Laplace equation in polar coordinates

Aa(7, 6) = (ag YA+ f*zag)a =0 (25)
it is directly obtained by substitution of (18); that
R
Aii(7, 0) = #72 <d (’1%(29) + 1 f}(é)) =0 (26)

and consequently a general solution for ﬂ(é) takes the following form including two constants a. and a,:
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£,(0) = a.cos 20 + a, sin /0. (27)

Then, the pair of potential and flux function solutions, for A # 0, can be written as a vector

w(r.0) [u(r, 0)] — pH0) [ cos A0 sin 20 ] [ac] (28)

¢(r,0) VIK[sin 20 /[K[cos 26 | | a;
or in a compact form
w(r,0) = r*Z(J,0)a, (29)

where aT = [a,,a,] and § = 0(0). Note that |Z(1,0)| = p*(0)/|K]| # 0. Thus Z(4,0) is a regular matrix.
Equation (29) for 8 = 0y and 0, gives

w(r,00) = "Z(2,00)a and w(r,0,) = r"Z(2,0))a. (30)
Insertion of a obtained from (30); into (30), leads for A # 0 to
W(}", 91) = E()ﬂ 913 Go)W(}", 90)7 (31)
where
z COS A —L_sin i@
B 0,00 = 20002 (2,00 = (201 ) Vi
p(0o) —+/|K|sin A&  cosid
_[EDQ) EP(A)
N [E“)(}L) ED) | (32)

@ = 6(6,) — 6(0y) having been evaluated in Section 2.3.
The 2x2 matrix E is the transfer matrix defined in an analogous way to Defourny (1988) and Ting
(1997). 1t transfers the value of w at 0, to w at 0,. Elements of this matrix are denoted here as in Ting (1997).
It can be seen that

EV()=EW() and EW(2) = —|KIEP (). (33)
It is also useful to observe that

E| = (p(01)/p(05))* # 0, (34)

and for a particular case of an isotropic material of wedge |E| = 1, cf. Defourny (1988).
Eq. (31) can be partitioned in the following way:

u(r,01) = EV(2u(r,00) + E? (1) ¢(r, 0y), (35)

¢(r,01) = EP (2u(r, 00) + EW (2)¢(r, 00). (36)

Recall that (35) and (36) hold only for u(r,0) and ¢(r, 0), respectively, in the forms (17) and (24).

Consider now four configurations of homogeneous Neumann (N) and Dirichlet (D) boundary condi-
tions at wedge edges and potential solutions of the form (17) for 4 # 0. System (35) and (36) have, for each
configuration, a non-trivial solution if and only if 1 is a root of the corresponding eigenequation.
Eigenequations (in a general form and also in a simple explicit form) and eigenvalues for these homo-
geneous wedge problems are summarized in Table 1, where Z is the set of integer numbers.

Note that in the N-N case the solution for 4y = 0 corresponds to a constant solution, u(r, 0) = a, and
q(r,0) = ¢(r,0) = 0.

As can be observed, the roots of the eigenequations presented are real and simple, and coincide in the
N-N and D-D cases because of (33), and in the N-D and D-N cases because of (33);.
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Table 1
Eigenequations, eigenvalues and general singular solutions for homogeneous single wedge problems
Case  Boundary conditions  Eigenequation Eigen- Series expansion of non- Potential solution
values 4,  vanishing either potential u(r,0) (0p<0<0))
(lez) or flux at 0
N-N  gq(r,0) =q(r,0,)) =0 E®(G)=0 sinio=0 [Z u(r, 0y) S oAt p*(0)
= YA’ p (0o) X COS (},,(9(9) - é(%)))
D-D  u(r,0y) =u(r,0,)=0 E@(1)=0 sinio=0 [Z q(r, 09) S At p*(0)
= VKIS A o (00) 0 x sin (/1/((5(0) - é(eo)))
N-D  ¢(r,00)) =u(r,0,)=0 ED()=0 cosiw=0 (I+HZ  u(r0) S oAt p*(0)
=3 5o A’ p* (00) X cos (;.1(é(0) - é(oo)))

DN u(r,0) = q(r,0) =0 E9D()=0 cosid=0 (I+1) q(r,0) S Ay p (0)

= VK[ g4~ p" (00) 2 x sin (x,(é(@) - é(eo)))

gi=

Explicit forms of general singular potential solutions u(r, 6) at a single wedge with any configuration of
homogeneous boundary conditions can be obtained using expression (31) written for any angle 0,
0y <0< 0y, instead of only its maximum value ;. Hence,

w(r,0) = E(4,0,00)w(r, 0,). (37)
Starting from suitable series expansions of a non-vanishing distribution of either potential or flux at 0y,

expressions of general singular solutions u(r, 0) are presented in Table 1 as well. Analogous expressions for
q(r,0) can be obtained in a similar way using (37).

4. Multi-material corner singularity analysis

Consider a corner domain © C R? that consists of m > 2 different anisotropic homogeneous wedge
domains Q,={x e R*0<r<R(0),0, 1 <0<0,} of angle w,=0,—0, 1 (n=1,...,m). Material
properties of the nth wedge are defined by a symmetric positive definite matrix K,. All wedges refer to the
same cartesian and polar coordinate systems, see Fig. 2. The total corner angle y is

O0<y=0,—0=w4+w+ -+ w, <2 (38)

Considering the same singularity exponent 4 of a basis function u(r, 0) = »*f;(0) for all wedges, the key
idea, following Defourny (1988) and Ting (1997), is to apply equations derived in Section 3, basically Eq.
(31), to each wedge of the multi-material corner together with an application of the perfect transmission
conditions at wedge interfaces.

Denoting by a subscript » the quantities associated to the nth wedge, Eq. (31) is written as

W,,(l", On) = En(/la 0n7 0,,,] )Wn (7’, Onfl)v (39)
where from (32)

. cOS A, L_ sin la,
E,(1,0,,0, 1) = <M> VKl . (40)
Pn(0-1) —+/|K,| sin A&, cos A,

Transmission conditions across the wedge interface at 6, demand that

w,(r,07) = w, (7, 0;)7 r >0, (41)
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A

Xy

v

S|

Fig. 2. Multi-material corner.

where 0 and 07, respectively, denote unilateral limits from the left and right. Eq. (41) means continuity of
potential and normal flux (or flux function) associated to the normal vector n(0,) = (—sin6,,cos0,).
Repeated application of (39) and (41) for n = 1,...,m leads to

Wi (I", Hm) = Cm()ha Hma HO)WI (I”, 60)7 (42)

where
~ cO(n) CR)
Cm()w ema 90) = Em(}w emv Hmfl)Emfl ()w emflv 0m72) e El (/La 017 HO) = |:C,(n3)()») Cr(:)(}y) . (43)
Using (34) and (43) it is obtained that
. m 0, (9’1) > 21

C,.(4,0,,00) = R 0, 44

Ca 0, 00) E(pn<en1> ¥ (44)
which implies a useful relation

CYACY(2) # CP()CP(A). (45)

Eq. (44) reduces to |C,(4,0,,00)| = 1, for isotropic materials, cf. Defourny (1988).
For the case of a multi-material plane, when y = 2z, and edges at 0 = 0,, and 0 = 0, correspond to the
same line, the transmission condition across this line demands

Wm(rver;):wl(rvea—)v (46)
which implies, using (42), that
(Cn(4,0,,60) — Dwy(r,6) =0, (47)

where I is the 2x 2 identity matrix. A non-trivial solution for w,(r, 0y) exists if
|Cm(;{a Hma 90) - I| = 07 (48)
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Table 2

Eigenequations for open multi-material corners
Case Boundary conditions Eigenequation
N-N q1(r,00) = qu(r,0n) =0 CY(2) =0
D-D uy (r,00) = up(r,0,,) =0 C,(”z)(/l) =0
N-D q1(r,00) = u,,(r,0,) =0 ch(2)=0
D*N ul(r 90) - qm(r m) = 0 C):)(;L) = O

which is equivalent to
G (D) + G (2) = 1+ |Cpu(2, O, 00)]. (49)

The roots 4 of this equation represent singularity exponents of the closed corner problem.
For the case of a multi-material corner in which homogeneous Neumann or Dirichlet boundary con-
ditions are prescribed on lines at 0 = 0y and 0 = 0,,, the analysis is similar to the one presented in Section 3.
Using analogous equations to (35) and (36)

n(r,0,) = CP (2)ur (1, 00) + CP () (7, 00), (50)

G(r,0,) = CD(2)ur (1, 00) + C (2) 1 (1, o), (51)
the corresponding eigenequations for different combinations of homogeneous boundary conditions can be
derived, see Table 2.

Due to the fact that an analogous relation to (33), does not hold for matrix C, (4,8, 6y), the roots of
eigenequations in the N—N and D-D cases are in general different, the same holding for roots of eigen-
equations in the N-D and D-N cases. Additionally, from (45) it follows that if 1 is an eigenvalue for the
N-N or D-D cases it cannot be any eigenvalue either for N-D or D-N, and viceversa.

An elementary proof that singularity exponents of open and closed isotropic multi-material corners
(roots of eigenequations given in Table 2 and (49)) are real numbers is presented in Appendix E (see also a
discussion on this topic by Kellog (1971) and Birkhoff (1972)). In view of the real character of singularity
exponents in isotropic corners, it is shown in Appendix F that singularity exponents of any open aniso-
tropic multi-material corner are also real. In a particular case of open anisotropic bi-material corners, this
fact was already proved by Leguillon and Sanchez-Palencia (1987) and Ma and Hour (1989). Ma and Hour
(1990) also showed that singularity exponents are real for a crack terminating at an interface. Nevertheless,
the same fact is proved for closed anisotropic multi-material corners in Appendix F only if condition (F.4)
holds. An example of a closed bi-material corner, which does not fulfill this condition, with complex sin-
gularity exponents will be presented in the next section.

An expression of the solution in the nth wedge, corresponding to a particular value of 4 as a root of an
eigenequation given in Table 2 or (49) can be obtained as in (37) using the representation

wn(ra 0) = Cn ()‘7 07 OO)WI (}"7 OO)a 01171 g 0 g Orn (52)

where w; (r, 0p) is determined from the boundary condition at 6, for open corner problems or as an eigen-
vector in (47) for closed corner problems.

5. Examples

Two typical examples of multi-material corners appearing very frequently in engineering practice are
studied in what follows. They allow us, first to corroborate the present general approach comparing with
the corresponding results obtained by other authors using more specific approaches, and second to present
some new results which are important from an engineering point of view.
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The simplest case of multi-material corners, bi-material corners, is studied first. These corners can model
many local configurations present in composite materials, electronic packaging, etc.

The second example, a crack terminating at a bi-material interface, has been motivated by its typical
presence in composite materials and coatings (e.g. thermal barrier coatings). The configuration analysed
can be considered as a simple model of a failure mode in such applications. For an extensive bibliography
on this configuration see Ma and Hour (1990).

5.1. Bi-material corners

Consider the case of two adjacent anisotropic wedges (m = 2). Then applying (40) and (43)

NIXOVAON
Cy(1,6,,60) = <p2(91) p1(90)>

~ ~ K| . ~ . ~ 1 ~ . ~ 1 o~ N~
COS A, COS AW — 4 /Kilsin A, SIn Ay —~— COS A, SIN A@| + ——= Sin A@, cos 1@,
% IKa| vV IKil VK2
—+/|Ks| sin 1@, cos A — +/|K | cos 1@, sin 2@, COS A, COS A| — }%sinicbz sin A,
(53)

Defining a bi-material parameter €, as in Ma and Hour (1989), as

1 -« |K1|
=17 1/|K2|7 <e<l, (54)

simple expressions of eigenequations for the case of open bi-material corners can be obtained from (53) and
eigenequations given in Table 2, see Table 3.

Eigenequations presented in Table 3 were previously obtained using a complex variable approach in
conjunction with the complex Mellin transform by Ma and Hour (1989). Eigenequation for the N—N case
was also deduced in a different way by Leguillon and Sanchez-Palencia (1987).

If interface cracks are considered, i.e. w; = w, = 7, then @; = @, = ©n. Explicit values of singularity
exponents 4, for this particular case of open bi-material corners are shown in Table 3 as well. Note that
these expressions of A; for both N-D and D-N cases can also be written in terms of x in view of the
following relation:

arctan \/k = farccose. (55)

Expression of 4; for both N-N and D-D cases shown in Table 3 corresponds to a well known result, see
e.g. Ma and Hour (1989) and Ting (1986, 1996). An equivalent expression of 4; for the N-D case to that
given in Table 3 was presented for isotropic materials by Ting (1986) and for anisotropic materials by Ma
and Hour (1989).

Table 3
Eigenequations for open bi-material corners and eigenvalues for interface cracks as a particular case
Case Eigenequation for an open bi-material corner Eigenvalues for an interface crack 4, (I € Z)
N-N sin )((Z)[ + (Z)z) = esin Z(d)] — (I)z) é
D-D sin ;((Z)l -+ (I)z) = —esin /1((1)1 — (Z)g) %
N-D cos A(@; + @) = —ecos L@ — @) I+1+arccose
D-N cos A(@; + @;) = ecos A(@ — @) I+ Larccose

s
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In the case of a bi-material plane, the eigenequation (49) takes the following form obtained from (53)

C0M<@l+@)zezcosi@l_@)gfez <p2<02> p]wl)) +<pz<ez> m(eo)' L s

2 p2(61) p1(0o) p2(01) p1(0o)

An equivalent eigenequation to (56) was derived for an isotropic bi-material plane in Liggett and Liu
(1983), see Eq. (4.18) there. !

As has been mentioned in Section 4, the roots of (56) are not necessarily real if the expression which
appears on the left-hand side of (F.4) is different from unity. Observe that this expression appears two times
on the right-hand side of (56).

It has to be stressed that a complex singularity exponent (A = Rel + ilmA) has an associated oscillatory
singular behaviour of flux of type 7¢*~! sin(Im AInr) or #2¢*~! cos(Im 4 Inr). Such solutions are well known
in the case of ‘open’ elastic interface cracks, where no contact zone is considered at the crack tip, e.g. Ting
(1986, 1996).

Following an analysis given in Leguillon and Sanchez-Palencia (1987), if a closed bi-material corner has
a symmetry axis (taking into account the orientation of orthotropy axes in both materials) then the
solutions at this corner can be split into a symmetric and a skew symmetric part, which are, respectively,
given as solutions of the Neumann and Dirichlet problems on one half of the bi-material plane with the
boundary defined by the symmetry axis of the closed corner. Therefore, the singularity exponents of such a
closed corner are defined by the singularity exponents of the Neumann and Dirichlet problems at the
corresponding open corner defined by the pertinent half-plane. Consequently these singularity exponents
are real, as has been explained previously. It is an easy exercise to check that in this particular case of closed
anisotropic corners the condition (F.4) holds.

As follows from the above analysis, the only possible candidates of closed bi-material corners to have
complex eigenvalues are those which do not have any symmetry axis. A simple example of such a closed
bi-material corner is presented in what follows. Consider K; = I, K, = diag[10,0.1], 0, = 0°, 6; = 90° and
0, = 360°, thus w; = 90° and w, = 270°. The value of the expression on the left-hand side of (F.4) is 0.1.
Then, the singularity exponents, roots of (56), with 0 < Re4 < 1 are 1 = 0.8816020381 + 0.3230787589i.

5.2. Crack terminating at a bi-material interface

Consider the case of two perfectly bonded half-planes with material properties defined by K; for x, > 0
and by K, for x, < 0. Consider a crack in the top half-plane terminating at the interface, Fig. 3. For the sake
of brevity only the case of homogeneous Neumann boundary conditions at the crack lips is analysed here.
Note that any combination of boundary conditions can be analysed using the pertinent eigenequation as
given in Table 2. Let the angle defined by the crack and the positive axis x; be denoted by w, 0 < w < =. For
the limit values of w = 0 or 7 the crack changes to an interface crack.

The above configuration can be represented, using the present notation, as a tri-material wedge defined
as follows: 0y =w, 0, ==, 0, =27, 0; =21+ w;, vy =1 —w, vy =7, w3 = w; K3 =K, and ¢,(r,0y) =
q3(r, 05) = 0.

Then, using (40), (43), the eigenequation for the N-N case in Table 2 takes the following form after some
rearrangements:

sin An (;c sin A@sin A(n — @) — k' cos 2@ cos A(m — @) — cos An) =0, (57)

! There is a misprint in the second member of Eq. (4.18) in Liggett and Liu (1983), the correct form of this term being
—2KK; cos Ad; cos 10;.
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A

K,
‘Q'Z

Fig. 3. Crack terminating at a bi-material interface.

K being defined in (54), and, in view of (15),

d):n—arccos(—%), (58)

with subscript 1 referring to the material in the top half-plane.
Eq. (57) is verified either when the first term vanishes, i.e. sin in =0, thus A =/, / € Z, or when the
second term vanishes, which is equivalent to the following equation:

cosin = —ecos A(m — 2m), (59)

€ being defined in (54). An equivalent eigenequation to (59) was obtained by Ma and Hour (1990) using the
complex Mellin integral transform. From a simple analysis of (59), it can be seen that the singularity
exponent 4 is smaller for negative than for positive values of ¢, which means that the corresponding flux
singular states are more severe when the crack is placed in the material with a higher value of determinant
of K, i.e. [K;| > |K;|, c.f. Ma and Hour (1990).

Note that if |K;| = |K;| then € = 0, and consequently the singularity exponent takes the value 4 = 0.5 for
any angle o and any orientation of the orthotropy axes of both materials.

For a particular case where the orthotropy axes of the material at the top half-plane are parallel and
perpendicular to the interface and the crack is perpendicular to the interface it holds that @ = w = n/2 and
an explicit expression of the singularity exponent takes the form

A=1- 1 arccos e. (60)
T

Thus, in this case, 2 = 0.5 if and only if e = 0.

Finally, consider the following configurations of material properties (see Fig. 3): K; = V - diag[l,k] - V7,
where the material parameter £ = 0.25 or 4, V, given by expression (B.3) in Appendix B, defines the angle «
(o = 0°,30°,90°) of orientation of material orthotropy axes, and K, = I. Then, the singularity exponents
obtained by a numerical solution of (59) are presented in Fig. 4.

As can be observed, the behaviour of the singularity exponent as a function of the crack inclination
verifies the expected symmetries, and 4 = 0.5 only for the limit cases of interface cracks. It is also interesting
to observe that in the case where [K;| > |K;| the lowest values of 1 are achieved if the direction of the crack
approximates to the orthotropy direction associated to the largest eigenvalue of Kj.
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Fig. 4. Singularity exponent as a function of the crack inclination to the interface.

6. Concluding remarks

A new general and powerful method for calculation of eigenequations whose roots define the singularity
exponents at multi-material anisotropic corners in potential theory has been developed. Eigenquation
computation is reduced to the evaluation of a product of 2x2 matrices, one for each homogeneous wedge.
When the corner is open the relevant expression is given by an element of the resulting matrix. When the
corner is closed the relevant expression is given by the determinant of the resulting matrix minus the
identity matrix.

Proof that singularity exponents are real in open anisotropic multi-material corners has been presented
for the first time, to the best authors knowledge. Additionally, a sufficient condition for the singularity
exponents to be real in closed anisotropic multi-material corners has been derived. As a consequence of
these new theoretical results, the first example in the literature, of a closed anisotropic bi-material corner
which violates the above condition and which has associated a complex singularity exponent has been
found. Notice that singular solutions corresponding to complex singularity exponents have an oscillatory
character, similar to that well-known in some elastic interface crack problems.

Once singularity exponents are evaluated, either analytically or using a numerical method, the solution
of the corner problem is obtained in an explicit form. This corner solution can be subsequently applied in a
numerical solution of an actual problem at a non-smooth domain as a local asymptotic solution in order to
improve accuracy and order of convergence of the solution.

Note that the method developed here for piecewise homogeneous anisotropic potential problems can be
used directly for computation of singularity exponents in an anisotropic Helmholtz equation and in non-
homogeneous potential problems with smooth variation of material properties, which appear in applica-
tions of the so-called Functionally Graded Materials (FGM’s). As follows from the anisotropic uncoupled
thermo-elasticity theory (Ting, 1996), the singularity exponents associated to a corner heat transfer
problem, which can be obtained by the method developed in this work, represent, when shifted by +1, a
subset of all singularity exponents of thermal stresses. (See Yosibash (1998) for a numerical analysis of
thermal stress singularities using knowledge of heat flux singularities at a corner.)

An extension of the approach introduced here to cases where the homogeneous convection and radiation
boundary conditions are prescribed on one or both corner faces and to cases where transmission conditions
at some or all interfaces are not perfect (i.e. some resistance to flux takes place, and therefore the normal
flux through the interface is proportional to the difference of potential at the adjacent wedges) should also
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be carried out developing, for example, Sinclair’s (1980) approach. Also an analysis of the existence of
power-logarithmic singularities in flux in the case of double eigenvalues (typically situated on the transition
loci separating regions of real and complex eigenvalues associated to closed anisotropic multi-material
corners which do not fulfill condition (F.4)) ought to be developed using approaches presented by Dempsey
and Sinclair (1979), Dempsey (1995), Leguillon and Sanchez-Palencia (1987) and Ting (1996).
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Appendix A. Transformation of the unit normal vector to a line

Consider the unit tangent and normal vectors to a line I' C R? at a point x which are related by n = Es,
where E is the unit antisymmetric matrix, E;, = —E» = 1 and E;; = E», = 0. Note that E'E = EE" =1,
where I is the identity matrix. N

It is obvious that the unit tangential vector to the transformed line I' = LI at X is given as

Ls Ls

S=r——=——=, (A1)
[Ls||  VsTK s
where (4); has been used. Starting from relation i = ES and using s = E'n leads to
ELE" L'
i = n__(L)n (A2)

VnEK 'E'n vn'Kn '

where the well-known relation EAET = |A|(A™")", valid for any regular matrix A € R*2, has been used.

Appendix B. A particular case of transformation X = Lx

A symmetric positive definite matrix K € R>*? can be decomposed in the following way, called the
symmetric real Schur decomposition (Golub and Van Loan, 1991):

K =VDV' = (VD'?)(VD'*)" = L7/ (L )", (B.1)

where D = diag[k, k] is a diagonal matrix of eigenvalues of K (k; = k, > 0)

1
ki, ey = E(Kn +Kn+ \/(K” —Kn) + 41<122), (B.2)

and V is an orthogonal matrix with columns defined by the eigenvectors of K, associated to the principal
axes of material orthotropy, (x},x})

V_<cosoc —s1noc), (B3)

sinot  cosa
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Fig. 5. Transformation of coordinates.

o being the angle of the first eigenvector with respect to axis x;, see Fig. 5, given by

2K
o = arctan 2 , (B.4)

Ky — K»n + \/(Kn — K»)* +4K2,

where in the case of an indeterminate expression for Kj; = 0, the above angle o can be taken o = n/2 if
K1 < Ky» and o« = 0 if Kj; = K». Hence,

cos o sin o

B

L= D—(l/z)VT _ \/k_l

! (B.5)
_sino coso
vk Vk

Considering the polar coordinate system (r, ) at the origin of the coordinates, the transformed radius
vector and its length can be written using (B.5) as follows:

cos(0 —a) sin(0 — o)

X=r , ,
vk

N (B.6)

f

rp(0) = r\/kfl cos2(0 — o) + ky ' sin’(0 — ). (B.7)

Angle 6 between the radius vector X = fe(é) and the coordinate axis x; can be evaluated by the following
compact analytical expression:

0— o for@—a:(2k+1)g

00)=13 [o_, (B.8)

1 k )
+ = | ® + arctan \/Itan((?—oc) for 0 — o # (2k—|—1)E
2 ky 2

where [-] means the integer part of a real number and & € Z is an integer number. Note that 6(a) = 0.
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Differentiation of (B.8) results in
do 1
— = B.9
d0 ~ Vkikap*(0) (B.9)

Appendix C. Relation between different transformations

Consider two different transformations defined by L; and L, with |L;| > 0 and |L,| > 0,
K'=L/L =L]L,. (C.1)
Taking into account that L, is a regular matrix gives, via multiplication of this equality from the left and
right, respectively, by (LIT)_l and L',

(LL) - (LLY) =1, (C2)
where I is the identity matrix. Defining Q = Lsz1 Eq. (C.2) writes as
Q'Q=1, (C3)

which means that the matrix Q is an orthogonal matrix (Golub and Van Loan, 1991) relating both
transformations

L-opL. o= (Sny ol (c4)

cosf

Appendix D. General relation between 0 and 0

Let us evaluate the Jacobian of the transformation between the polar coordinate systems (r, 6) and (7, 6).
Direct evaluation gives

_|OF oF i N
o(F.0) |or op| oFo0 00
a(r,0) |00 00 =50 "V (D.1)
or o0

where the fact that 65/ Oor = 0 and (10) have been used. On the other hand, evaluation of this Jacobian by an
application of the chain rule gives

0(7,0) _ 3(7,0) B(i1,%2) i, x2) YT PR (D.2)
o(r,0) 0(%,%) 0(x1,x2) 0(r,0) F K[p(0)

where relations (5), and (10) have been used. Equating the last expressions in (D.1) and (D.2) yields
o___ 1 (D.3)
do /IK]p2(0)

Appendix E. Proof that singularity exponents are real in open and closed isotropic multi-material corners

Let a piecewise constant function »(0) be defined in the open interval (0, 0,,) by positive numbers %, as
follows: »(0) =«, > 0 for 6 € (6,_1,0,), n=1,...,m, where 6y < 6, <---0,--- < 0,. Consider a space V
of continuous functions in the closed interval [0y, 0,,] defined as follows:

V= {f S C0[007 Hm]lf [0,-1,0,] € C2<0n—17 0,,) N Cl [Qn—l; Qn]vxnfl(g;) = %rz+1f/(0:); 1 < n < m — 1})

(E.1)
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where C* denotes k-times continuously differentiable functions in a set, and f’(6, ) and f7(6,"), respectively,
denote the unilateral limits from the left and right of the first order derivative of f até,.

Consider now a subspace V; of ¥ where eigenfunctions associated to a multi-material corner problem
(with homogeneous boundary conditions in the case of an open corner) will be looked for. Thus

Vo = {f e V|b.c}, (E.2)

where ‘b.c.’ denotes either f'(05)=/"(0,)=0, or f(0;)=r(0,)=0, or f'(05)=f(0,)=0, or
£(65) = £'(6,) = 0 in the case of an open corner, or £(0y) = £(0,) and . f"(0;) = xmf’((? )in the case of a
closed corner.

Define a weighted scalar product for square integrable functions on (6, 6,,) as follows:

def On
(g, / #(0)/(0)g(0) 0. (E3)

It is obvious that (f, f), > 0, and that (f, f), = 0 if and only if f is zero almost everywhere on (6o, 0,,).
The following results will be required. If /g € V4 then

(.80 = =", &) (E4)

Evaluation of the left-hand side in (E.4) by partitioning the integral to integrals on subintervals and in-

tegrating by parts yields
O
b= [ wrogo d0>

/ 5" (0 d0—i<<xnf<><>>

M§

(%nf( 2) = Y 1(0,))€(0,) = x1f"(07)g(00) + % f"(0,,)8(0n) = (f',&)..- (E5)

n

Taking into account the continuity conditions given in (E.1) and definitions of ‘b.c’ in (E.2), respectively, it
is seen that the value of the sum in the second row of (E.5) and value of expression —xf"(6;)g(6o) +
% f'(0,,)g(0,,) are zero, which proves (E.4).

Using (E.4) it can be shown that if f € J{ and

17(0)+ 22 (0) =0 for 0 € (0,.1,0,), n=1,...,m, (E.6)
then / is a real number. A straightforward calculation yields:
iz(fvf)x = <_f”7f>u = <f,7f/>y. =0, (E.7)

where (E.6) has been used in obtaining the first equality and (E.4) in the second one. Thus, 2* > 0, con-
sequently 4 is a real number.

The main result of this Section can be stated as follows. Let u(r,0) = r*f(0) be a solution of Laplace
equation in each wedge Q, = {x € R*|0 < r < R(0),0,.1 <0< 0,},n=1,...,m

%, Au(r, 0) = 0, (E.8)
and the following interface conditions hold forn=1,...,m —1
u(r,0,) = u(r,0,), (E.9)
_ 1 Qu _ 1 du
41 0,) =t < (,0,) = i1 50 (1, 07) = @i (. 07) (E10)

and, additionally, either some of the following homogeneous boundary conditions g(r,0;) =0 =
qn(r,0,), or u(r,05) =0=u(r,0,), or qi(r,05) =0=u(r0,), or u(r,0;)=0=gq,(r,0,), or the two
closure conditions u(r, 0)) = u(r,0,) and ¢,(r, 0y ) = g.(r,6,), hold. Then 4 is a real number.

’ Y m



5216 V. Manti¢ et al. | International Journal of Solids and Structures 40 (2003) 5197-5218

The proof starts by considering that »,Au(r, 0) = %, 2(f"(0) 4+ J2£(0)), g.(r,0) = r*'%,f'(0), and that
a general solution of /() + 2*f(0) = 0 is of the form f () = a.cos 0 + a, sin 0 which is a bounded and
smooth function for all §. Then, the interface and boundary conditions for u(r, ), respectively, are
equivalent to continuity conditions on f(6) in (E.1) and ‘b.c.” in (E.2), and consequently f € ¥; and (E.6)
holds. Therefore, A is a real number.

Note that system (E.6), (E.9) and (E.10) together with the boundary or closure conditions correspond to
a Sturm-Liouville eigenvalue problem with piecewise constant coefficients discussed by Kellog (1971) and
Birkhoff (1972).

Appendix F. Proof that singularity exponents are real in open anisotropic multi-material corners

Consider a multi-material > anisotropic corner Q as studied in Section 4. The objective of this section is
to show that any open anisotropic multi-material corner problem can be considered to be equivalent to an
open isotropic multi-material corner problem. Then, the main result of the Appendix E can be applied to
the anisotropic case considered here. As will be seen, the same statement holds for a particular case of
closed anisotropic corner problems as well.

In order to obtain a mapping between an anisotropic and a corresponding isotropic multi-material
corner which is continuous across interfaces between adjacent wedges, linear mapping used in (5) has to be
modified when applied to the nth wedge by a scaling factor and by a rotation matrix defined, for example,

by the following recursive formulae forn =1,...,m — 1:
P (0n)
Lh=1 Lg=1, F.1
e ) (FD
Q =1 Qn+1 = Q(én(gn) - én#—l(en))an (FZ)

where p, (0) is defined in (11), function én( ) in (B.8), and Q(-) in (C.4). Let &, = 1,Q,L,, L, being given in
(B.5). Then 7%, = PK;' and &' (#;")" = I,°K,. Consider a mapping defined for x € @, (where Q,
denotes the closure of Q,) by Zx=x (n =1,...,m). Denote the transformed nth wedge as
7,0,=Q, _{xeR2|0<r<R(0) 6, <0<0,,}

It is not difficult to check that the set of linear mappings defined in this way represents a continuous
mapping across the wedge interfaces. Actually, the transformed radius of a point x(r, 0,) at the interface
between Q, and ©,,; is given from the side of Q, by 7,(r,0,) = rl,p,(0,) and from the side of Q,,; by
Furt (r,0,) = rlyi1p,.1(0,). Then, in view of (F.1)

’:n+l(r> 071) — ln+1pn+l(9ﬂ) =1 (F3)

fn(r, é)n) l,,pn(g,,)
for n=1,...,m—1. In a similar way, using (F.2), it can be shown that @n(en) = é;1+1(0)1) for n=
1,....,m—1.
It has to be pointed out that condition 6,, — 8y <27 no longer has to be fulfilled.
In the case of a closed anisotropic multi-material corner, it is important to observe that
Fu(7, 00) = Py (r 00) if and only if 7,p,,(60,) = 1p,(0y), which according to (F.1) is equivalent to

H LACH I (F.4)

1pn

2 Magnitudes associated to the nth wedge are usually denoted either by a subscript ‘n” or sometimes for the sake of clarity by ‘(n)".



V. Manti¢ et al. | International Journal of Solids and Structures 40 (2003) 5197-5218 5217

Note that this always holds for isotropic multi-material corners. Nevertheless, condition (F.4) does not
hold, in general, for anisotropic multi-material corners. It is also interesting to observe the relation between
condition (F.4) and (44) and (49).

Let v and # be, respectively, defined in , and Q, and related by u(x) = a(%,x) for x € Q,. Then,
analogously to (6)

K )ij05,0,1(x) = Kuis L (my L (105, 05,0(X) = [AG(X). (F.5)
Thus, fulfilling governing anisotropic Eq. (2) in €, by u is equivalent to fulfilling Laplace equation by # in
aneﬁne transformed flux vector associated to an isotropic material in Ez,, as

hi(%) & 2,05, 0(X), (F.6)
where %, = \/m . Then, as in (7) the following expression of the transformed flux vector is obtained:

hi(X) = 1, 05u( LX) = %nu‘j(x)@?(nﬁﬁ = %l 2 L (mijhj (X), (F.7)

where h;(X) = K,;u;(x) for x € Q,.
An analogous procedure to that used in Appendix A yields the following transformation rule for a unit
normal vector to a curve in Q,
) 2"
n= ln("¢7 where ng, = v/n"K,n. (F.8)

ng,

Using expression (F.8) the following expression of the transformed normal flux in €, is deduced:

(8 = 1 (%) =0, 2 (9)

Hence, when the transformed normal flux across the wedge interface at @,, is evaluated, the following
expressions are obtained:
~ rn D qn\7, 0; ~ ~ N
0:0,) =0 0 g 28)) = 0
According to (20) it holds that n, (0,) = %.p,(0,) and ng, ., (0,) = %,41p,,,(0,). Substituting these relations
to (F.10) it is obtained, in view of (F.1), that the following equalities

G,(7,0,) = 4,1 (7, 07) and  q,(r,0,) = g1 (r, 07) (F.11)

are equivalent forn = 1,...,m — 1. Consequently any open anisotropic multi-material corner problem with
its interface conditions of continuity in potential and fluxes is equivalent to an open isotropic multi-material
corner problem. It has to be stressed that the same statement does not hold for closed anisotropic multi-
material corner problems. It can be shown that a sufficient condition for this is (F.4), because if this
condition holds then

qn+1 (I", 9:{)

. F.10
ln+an,,+| (0/1) ( )

G, (7, @;) = q,(7, 53) is equivalent to ¢, (r,0,) = q:(r,0;), (F.12)

which can be shown in a similar way to (F.11).

Therefore, taking into account the main result of Appendix E, singularity exponents for open aniso-
tropic multi-material corners, and also for closed corners providing (F.4) is fulfilled, are real numbers. An
example of a closed bi-material anisotropic corner, which violates (F.4), with complex singularity exponents
is given in Section 5.1.
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